第一范文网 - 专业文章范例文档资料分享平台

最新版2019-2020年广东省中山市九年级上学期期末数学模拟试卷及答案-精编试题

来源:用户分享 时间:2025/6/6 12:03:46 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

【分析】(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(10﹣x)cm,依题意列方程即可得到结论;

(2)设两个正方形的面积和为y,于是得到y=x2+(10﹣x)2=2(x﹣5)2+50,于是得到结论.

【解答】解:(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(10﹣x)cm,

依题意列方程得x2+(10﹣x)2=58, 整理得:x2﹣10x+21=0, 解方程得x1=3,x2=7,

3×4=12cm,40﹣12=28cm,或4×7=28cm,40﹣28=12cm. 因此这段绳子剪成两段后的长度分别是12cm、28cm;

(2)设两个正方形的面积和为y,则y=x2+(10﹣x)2=2(x﹣5)2+50, ∴当x=5时,y最小值=50,此时,10﹣5=5cm,

即两个正方形的面积之和的最小值是50cm2,此时两个正方形的边长都是5cm.

25.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴相交于点B. (1)求抛物线的解析式;

(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

九年级上学期期末模拟试题

【考点】二次函数综合题.

【分析】(1)由对称轴公式及A、C两点的坐标直接求解即可;

(2)由于B点与A点关于对称轴对称,故连接BC与对称轴的交点即为M点;

(3)设出P点的纵坐标,分别表示出BP,PC,BC三条线段的长度的平方,分三种情况,用勾股定理列出方程求解即可.

【解答】解:(1),解得:,

∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+3)(x﹣1), ∴B(﹣3,0),

把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,

,解得:

∴直线BC解析式为y=x+3;

(2)设直线BC与对称轴x=﹣1的交点为M, 则此时MA+MC的值最小.

把x=﹣1代入直线y=x+3,得y=2, ∴M(﹣1,2),

即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);

九年级上学期期末模拟试题

(3)设P(﹣1,t),又B(﹣3,0),C(0,3),

BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(t﹣3)2+12=t2﹣6t+10, 若B为直角顶点,则:BC2+PB2=PC2, 即:18+4+t2=t2﹣6t+10,解得:t=﹣2; 若C为直角顶点,则:PB2+PC2=PB2, 即:18+t2﹣6t+10=4+t2,解得:t=4; 若P为直角顶点,则PB2+PC2=BC2, 即:4+t2+t2﹣6t+10=18,解得:t=

),(﹣1,

综上所述,满足要求的P点坐标为(﹣1,﹣2),(﹣1,4),(﹣1,

九年级上学期期末模拟试题

2017年2月20日

九年级上学期期末模拟试题

最新版2019-2020年广东省中山市九年级上学期期末数学模拟试卷及答案-精编试题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0mp1q8m0uy6gjog0oh073pit886asl004vj_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top