2.---------③ y0??x0?m------②y0?mx01111??m?m2??m??,----------------------------12分 4m2m42112当m?时,直线l的方程为y?x?,抛物线C的方程为x?2y,-------------13分
22112当m??时,直线l的方程为y?x?,抛物线C的方程为x??2y.----------14分】
22①②③联立得
20.解:(1)解法1:∵a1?a2?40,a1a2?256,且q?1解得??a1?8---------------2分
?a2?32∴q?a2?4 ∴an?a1qn?1?8?4n?1?22n?1---------------------------------4分 a12n?1∴ bn?log2an=log22?2n?1--------------------------------------------6分
【解法2:由a1?a2?40,a1a2?256,且q?1
?a1?8a得? ∴q?2?4---------------------------------------------------2分
a1?a2?32 ∴bn?1?bn?log2an?1?log2an?logan?1?log24?2,----------------------------3分 an又b1?log2a1?log28?3,-------------------------------------------------------4分 ∴?bn?是以3为首项,2为公差的等差数列,----------------------------------------5分 ∴bn?3?(n?1)?2?2n?1;----------------------------------------------------6分】 (2)当n?2时,Tn?Tn?1?bn?1?2n?1,
∴Tn??Tn?Tn?1???Tn?1?Tn?2????T3?T2???T2?T1??T1 =?2n?1???2n?3????5?3??n?1??2n?1?3?2??n?1??n?1?;---------------8分
∵当n?2时,
111?11??????,----------------------------10分 Tn?n?1??n?1?2?n?1n?1?∴
11111= ??????T2T3T4Tni?2Tin
- 5 -
?1??1??11??11?1??11??11???11????????????????????????? ?2??3??24??35??n?3n?1??n?2n??n?1n?1??1?111?31?11?1??????????.--------------------------------------12分 2?2nn?1?42?nn?1?=
∵n?2,∴
11115???? nn?1236∴
31?11?3151????????. 42?nn?1?4263又
11??0 nn?131?11?3????? 42?nn?1?4?∴
1n13即对?n?N,n?2,???.----------------------------------------------14分
3i?2Ti421.解:(1)当a?1时,f(x)?x?x?x?2
32? f'(x)23x?2x?=1(x?1)(3x?1),------------------------------------------2分
令f'(x)?0,解得x1??,x2?1. 当f'(x)?0时,得x?1或x??当f'(x)?0时,得?131; 31?x?1. 3当x变化时,f'(x),f(x)的变化情况如下表:
x f'(x) f(x) 1(??,?) 31? 31(?,1) 3? 单调递减 1 (1,??) + 单调递增 0 极大值 0 极小值 + 单调递增 -------------------------------------------------------------------------------4分 ∴当x??时,函数f(x)有极大值,f(x)极大=f(?)?213135,-----------------------5分 27当x?1时函数f(x)有极小值,f(x)极小?f(1)?1---------------------------------6分 (2)∵f'(x)?3x?2ax?1,∴对?x?R,f'(x)?|x|?24成立, 3
- 6 -
4对?x?R成立,--------------------------------------7分 31①当x?0时,有3x2?(2a?1)x??0,
31即2a?1?3x?,对?x?(0,??)恒成立,----------------------------------9分
3x即3x2?2ax?1?|x|?∵3x?111?23x??2,当且仅当x?时等号成立, 3x3x31------------------------------------------------------11分 21②当x?0时,有3x2?(1?2a)x??0,
3∴2a?1?2?a?即1?2a?3|x|?1,对?x?(??,0)恒成立, 3|x|∵3|x|?111?23|x|??2,当且仅当x??时等号成立, 3|x|3|x|3∴1?2a?2?a??1----------------------------------------------------13分 211,].-------------------------------------------14分 22③当x?0时,a?R 综上得实数a的取值范围为[?
- 7 -
相关推荐: