10, 重排范围和区域;重排范围有助于提高内存的利用效率。重排区域有利于用户自定义界面的方
便。Grid/Reorder 菜单同时提供”带宽“的打印,“带宽”提供对区域和内存中单元网格的分布
情况的了解。
边界条件: 1,
边界条件的纵观。A,Flow inlet and exit boundaries: pressure inlet, velocity inlet, mass flow inlet, inlet vent, intake fan, pressure outlet, pressure far-field(远处压力场), outflow, outlet vent, exhaust fan .b,Wall, repeating, and 柱boundaries: wall, symmetry, periodic, axis .c,Internal cell zones: fluid, solid (porous is a type of fluid zone) d,Internal face boundaries: fan, radiator(散热器), porous jump, wall, interior 。内在的面边界条件是定义在单位面上,这意味着他们没有有限的厚度,为流动性质的突变提供了一种方法)。这种边界条件用于表示风扇、多孔膜、散热器。其中的内部类型不需要输入任何参数。 使用边界条件面板。Define-boundary conditions.a,改变边界区域类型。在设置边界条件以前,要先检查边界区域是否符合你的要求。如果需要修改区域的类型可以在边界条件面板中修改。(注意:这种方法只能用来改变边界区域的类型,不能滥用)!如果你使用的十多相的模型,改变区域类型的过程有些不同。边界区域的类型只能是下面的几种:
Category Zone Types Faces axis, outflow, mass flow inlet, pressure far-field, pressure inlet, pressure outlet, symmetry, velocity inlet, wall, inlet vent, intake fan, outlet vent, exhaust fan fan, interior, porous jump, radiator, wall periodic fluid, solid (porous is a type of fluid cell) 2,
Double-Sided Faces Periodic Cells 3,
4, 5, 6, 7,
fluent中边界条件是和区域联系的,而不是和面或者单元联系。设置方法:1,在边界条件面板选择要设置条件的区域,然后选择”set”。2,选择区域后选择区域类型3,双击区域列表中的区域的名字。
复制边界条件。你可以把一个区域的边界条件复制到其他相同类型的区域中去,但是不能从外部的边面复制到内部的壁面。反之亦然!如果你使用的是多相的模型,情况有所不同! 用鼠标在图形窗口中选择需要的区域。1,显示网格, grid display panel.2,使用右键在图形窗口中选择你要选择的区域,该区域的id会在区域列表中自动选中。 修改边界区域的名字,在边界条件面板中,选择区域,选择’set’.
定义非-统一的边界条件。每种类型的边界区域的大部分边界条件都可以定义为外形函数,而不是常数。你可以使用一个在外部生成的边界的外形函数,或者一个自己定义的函数。
8,
9,
定义瞬时边界条件:两种方法:1,使用与标准边界外形函数相似的外形函数。2,表格形式的瞬时外形函数。你可以通过以下命令将这个外形函数读入fluent中,define-profile, file-read-profile.file-read-transient-table.
你可以将边界条件储存成一个文件,以后在重复使用。
流动入口和出口 1,
使用流动边界条件。一共有始终相关的条件:1,速度入口边界条件,定义进口边界的速度和标量性质。2,压力入口边界条件:定义进口边界的总压和其他的标量值。3,质量流动入口边界条件:用于在可压缩流中表示进口的质量流量。在不可压流中不需要,因为密度一定时,速度边界就确定了该值。4,压力出口边界条件用于表示流动出口处的静压和其他标量(当存在回流时)。此时用它代替流出物边界条件能够提高迭代的收敛性!5,压力远场边界条件:用于模拟一个具有自由流线的可压缩流动在无穷远处的指定了马赫数和静力条件的情况。6,流出物边界条件用于模拟流动出口处的速度和压力边界条件都不知道时的情况。这种情况在出口处的流动接近完全发展的流动状态是比较合适,该条件假设在出口的法向方向除了压力外其他的流动变量的梯度都是0。不适用于压缩流的计算。7,进口泄口的边界条件用于模拟在进口处有指定的流动损失系数,流动方向,周围总压和温度的有泄口的进口条件。8,进气风扇边界条件:用于模拟一个外部的进气风扇,有指定的压力上升,流动方向和周围的总压和温度。9,出口泄口边界条件:出口处的泄口边界条件,但是要求指定静压和温度。10,排气风扇边界条件:出口处的风扇边界,要求指定静压。。
决定湍流参数:
如果在进口处准确地描述边界层或者充分发展的湍流很重要的话,比较理想的是你通过建立一个外形函数来设置湍流参数。(基于实验数据或者经验公式)如果你有这个外形的解析描述,而不是数据点的话,你既可以通过建立外形函数文件也可以通过建立用户自定义函数来提供进口的边界条件。
在建立外形函数后,你可以如下地使用:1,Spalart-Allmaras 模型:在湍流说明方法下拉菜单中选择湍流粘性或者粘性比,然后再为它选择合适的外形函数名称。Fluent将计算湍流粘度,通过选择适当的密度和分子粘度计算
。2,k-模型:在湍流说明方法下
模型
拉菜单中选择k- ,并且为湍流动能和湍流耗散率选择合适的外形函数。3,k-
:
说明方法同上。 4, 雷诺压力模型:除了按照k-设置以外的下拉菜单中为为雷诺压力成分选择合适的外形函数文件。
湍流量的相同说明
,还要在雷诺压力说明方法
在多数的湍流中,高阶的湍动往往是在剪切层生成,而不是进入到边界层的区域中去。导致计算结果对流入边界层的值不敏感!但是要注意边界值不能过于不自然以至于干扰你的结算或者阻碍收敛!就像在外部流中自由流的过大的粘度值会掩盖边界层。你可以通过利用上述的方法来输入统一的常量。
湍流强度:定义,湍动速度u’/平均速度u。1%以下的被认为是弱湍流,10%以上的被认为是强湍流。一个管道内部的充分发展的湍流的强度可以按下式计算:
湍流长度标尺和水力直径:长度标尺是和湍流的大涡尺寸相关的物理量,在充分发展的管流中,长度标尺受到管道尺寸的限制。
.其中,L是相关的管道的尺寸。对于充
分发展的湍流管流,L取管道的直径。对于渠道或者非圆形的交叉部分,你可以取水力直径。对于由流动中阻碍物引起的湍流,更好的选择是将长度标尺选取基于阻碍物的尺寸。对于选定的流动类型的特征长度L或者湍流长度标尺设定方法如下:1:对于充分发展的内部流动,选择强度和水力直径方法,然后指定水力直径。2,对于转向叶片、多孔板等,选择强度和水力直径,然后指定流动开始处的特征尺寸。3,对于壁面包围的流动,(在进口处包括了一个湍流的边界层)选择强度和长度标尺方法,用边界层厚度δ=0.4δ99 。
99
计算湍流长度标尺,
湍流粘度比:μt/ μ,和雷诺数的大小成比例,Ret=k/(υ)。Ret在大雷诺数的边界层、
剪切层、充分发展的管流中较大(100-1000)。但对于大多数的外部流的自由流的边界处,该值很小,一般设为(1,10)。设置该值时,对于Spalart-Allmaras model,选择湍流粘度壁,对于k- modelsViscosity Ratio。
2
, the k-
models, or the RSM)你可以选择Intensity and
.
湍流量之间的关系:1,通过湍流强度和长度标尺计算湍流粘度:
,该
式用于Spalart-Allmaras model. 2,通过湍流强度估算动能, 。
在非显式地指定动能的情况下,都通过该式计算。3,通过长度标尺估算耗散率:
。其中,
是一个 经验常数,(大约0.09)。在非显式地指定耗散率
的时候,都通过该式计算。4,通过湍流粘度比估算,耗散率:
。
的值同上式。该式用于已知粘度比的情况下。5,估算衰退湍流的湍流耗散率:其中,△k表示动能的衰退。
表示自由流的速度。
。
是流动区域的线性长度。如果
你用该方法估算耗散率,你应该保证由此计算而得的湍流黏度/动力黏度不至于太大,
通过长度比尺估算ω:
其中,是一个经验常数,(0.09)这种方法在选择“强度和水力直径”或者“强度和长度尺度”时采用。
通过黏度比估算ω:候采用。
该方法在选择“强度和黏度比”的时
通过湍流动能估算雷诺应力: 以及(对a不求和)当你在
雷诺应力方程模型中选择K and Turbulence Intensity下拉菜单时采用该方法。
为LES指定进口湍流:为LES的进口指定的湍流强度值将随机地干扰瞬时速度场。不能说明一个成型的湍流数量,取而代之地,进口边界层流动的随机组成可以由对速度成分叠加随机的干扰来解释。
6.3 压力进口边界条件
同其他的流动标量属性一起,压力进口边界条件用于定义流动进口的动压。可用于可压缩和不可压缩流体的计算。用于进口的流量或者流速不知道的时候。用于象浮力流动这样的流动,或者为外部流动定义一个“自由”的边界。 1 输入
? 总压(滞止压强)
相关推荐: