证 如图3-102,设AD和BE相交于P,作直线CP,交直线AB于F′,由塞瓦定理得
所以 F′B=FB,
即F′与F重合,所以AD,BE,CF相交于同一点.
塞瓦定理的逆定理常被用来证明三线共点.
例3 求证:三角形的三条中线、三条内角平分线和三条高所在的直线分别相交于同一点.
证 (1)如果D,E,F分别是△ABC的边BC,CA,AB的中点,则
由塞瓦定理的逆定理得中线AD,BE,CF共点.
(2)如果D,E,F分别是△ABC的内角平分线AD,BE,CF与边BC,CA,AB的交点,则
由塞瓦定理的逆定理得角平分线AD,BE,CF共点.
(3)设D,E,F分别是△ABC的高AD,BE,CF的垂足.
(i)当△ABC是锐角三角形时(如图3-103),D,E,F分别在BC,CA,AB上,有
BD=ccosB,DC=bcosC,CE=acosc, EA=ccosA,AF=bcosA,FB=acosB, 所以
由塞瓦定理的逆定理得高AD,BE,CF共点.
(ii)当△ABC是钝角三角形时,有
BD=ccosB,DC=bcosC,CE=acosC,
EA=ccos(180°-A)=-ccosA, AF=bcos(180°-A)=-bcosA,
FB=acosB,
所以
由塞瓦定理的逆定理,得高AD,BE,CF共点.
(iii)当△ABC是直角三角形时,高AD,BE,CF都经过直角顶点,所以它们共点.
例4 在三角形ABC的边上向外作正方形,A1,B1,C1是正方形的边BC,CA,AB的对边的中点,证明:直线AA1,BB1,CC1相交于一点.
证 如图3-104.设直线AA1,BB1,CC1与边BC,CA,AB的交点分别为A2,B2,C2,那么BA2:A2C等
于从点B和C到边AA1的垂线的长度之比,即
其中∠θ=∠CBA1=∠BCA1.同理
将上述三式相乘得
根据塞瓦定理的逆定理,得AA1,BB1,CC1共点.
3.斯台沃特定理
定理 △ABC的边BC上任取一点D,若BD=u,DC=v,AD=t,则
证 过A作AE⊥BC,E为垂足(如图3-105),设DE=x,则有
AE2=b2-(v-x)2=c2-(u+x)2=t2-x2,
(若E在BC的延长线上,则v-x换成x-v.)于是得
消去x得
(u+v)2=b2u+c2v-uv(u+v),
这就是中线长公式.
(2)当AD是△ABC的内角平分线时,由三角形的内角平分线的性质
设a+b+c=2p,得
这就是内角平分线长公式.
(3)当AD是△ABC的高时,
AD2=b2-u2=c2-v2.
再由u+v=a,解得
所以
若设AD=ha,则
这就是三角形的高线长公式.当D在BC的延长线上时,用-v代替v,同样可得高线长线公式.
这就是三角形的面积公式.
相关推荐: