第一范文网 - 专业文章范例文档资料分享平台

2016-2017年江苏省泰州中学高一上学期期末数学试卷与答案Word版

来源:用户分享 时间:2025/5/17 6:50:20 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴a=0; (2)

,因为函数y=f(x)在x=﹣1时取得最大值,

当a≥1时,必须f(﹣1)≥f(a),即1+2a≥﹣a2+2a﹣2a,即(a+1)2≥0,所以a≥1适合题意;

当﹣1<a<1时,必须f(﹣1)≥f(1),即1+2a≥1﹣2a,即a≥0,所以0≤a<1适合题意;

当a≤﹣1时,因为f(﹣1)<f(1),不合题意, 综上,实数a的取值范围是[0,+∞). (3)

当△1=0时,,此时函数有三个零点1,;

当△2=0时,,此时函数有三个零点

时,方程﹣x2+2x﹣2a=0的两根为

, 且

,此时无解,

,解得a=0,

当△1>0,△2>0时,即方程﹣x2﹣2x+2a=0的两根为因为或者

,所以

赠送—高中数学知

识点

【1.3.1】单调性与最大(小)值 (1)函数的单调性

①定义及判定方法 函数的 性 质 定义 图象 判定方法 第13页(共15页)

函数的如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x< 1...x时,都有f(x)f(x),212.............那么就说f(x)在这个区间上是减函数. ...yy=f(X)f(x )1f(x )2ox1x2x(1)利用定义 (2)利用已知函数的单调性 (3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 (1)利用定义 (2)利用已知函数的单调性 (3)利用函数图象(在某个区间图 象下降为减) (4)利用复合函数 yf(x )1y=f(X)f(x )2 单调性 ox1x2x

②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.

③对于复合函数y?f[g(x)],令u?g(x),若y?f(u)为增,u?g(x)为增,则若y?f(u)为减,则y?f[g(x)]为增;若y?f(u)y?f[g(x)]为增;u?g(x)为减,为增,u?g(x)为减,则y?f[g(x)]为减;若y?f(u)为减,u?g(x)为增,则y?f[g(x)]为减. (2)打“√”函数f(x)?x?y

a(a?0)的图象与性质 xf(x)分别在(??,?a]、[a,??)上为增函数,分别在

[?a,0)、(0,a]上为减函数.

(3)最大(小)值定义

①一般地,设函数y?f(x)的定义域为I,如果存在实数

(1)对于任意的x?I,都有f(x)?M; M满足:

o x

(2)存在x0?I,使得f(x0)?M.那么,我们称M是函数f(x)的最大值,记作

fmax(x)?M.

②一般地,设函数y?f(x)的定义域为I,如果存在实数m满足:(1)对于任意的x?I,都有f(x)?m;(2)存在x0?I,使得f(x0)?m.那么,我们称m是函数f(x)的最小值,记作fmax(x)?m.

第14页(共15页)

【1.3.2】奇偶性

(4)函数的奇偶性

①定义及判定方法 函数的 性 质 定义 如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数...........f(x)叫做奇函数. ...函数的 奇偶性 如果对于函数f(x)定义域内任意一个x,都有f(-f(x),那么函数...x)=.......f(x)叫做偶函数. ... ②若函数f(x)为奇函数,且在x?0处有定义,则f(0)?0.

③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.

④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.

(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y轴对称) 图象 判定方法 (1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 综上得

或0.

第15页(共15页)

2016-2017年江苏省泰州中学高一上学期期末数学试卷与答案Word版.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0ppgh73s671x2cx44e354ncj33s2bw019sz_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top