新定义问题
【专题点拨】
新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模;3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 .
【解题策略】
具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决
【典例解析】
类型一:规律题型中的新定义
例题1:(2015?永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是( )
A.[x]=x(x为整数) B.0≤x﹣[x]<1
C.[x+y]≤[x]+[y] D.[n+x]=n+[x](n为整数) 【解析】:根据“定义[x]为不超过x的最大整数”进行计算 【解答】:解:A、∵[x]为不超过x的最大整数, ∴当x是整数时,[x]=x,成立;
B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;
C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,
∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2], ∴[x+y]≤[x]+[y]不成立,
D、[n+x]=n+[x](n为整数),成立; 故选:C.
【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.
变式训练1:
(2015?山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )
A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)
类型二: 运算题型中的新定义
例题2:(2016·四川宜宾)规定:logab(a>0,a≠1,b>0)表示a,b之间的一种运算.
现有如下的运算法则:lognan=n.logNM=M>0).
例如:log223=3,log25=
,则log1001000=
.
(a>0,a≠1,N>0,N≠1,
【解析】实数的运算.先根据logNM=(a>0,a≠1,N>0,N≠1,
M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.
【解答】解:log1001000=变式训练2:
==.故答案为:.
(2016四川省乐山市第16题)在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y????y(x?0),则称点Q为点P的“可控变点”.
??y(x?0)例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).
(1)若点(﹣1,﹣2)是一次函数y?x?3图象上点M的“可控变点”,则点M的坐标为 ;
2(2)若点P在函数y??x?16(?5?x?a)的图象上,其“可控变点”Q的纵坐标
y′的取值范围是?16?y??16,则实数a的取值范围是 .
类型三: 探索题型中的新定义
例题3:(2016山西省第10题)宽与长的比是
5-1(约为0.618)的矩形叫做黄金矩形.黄2金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆心,以FD为半径画弧,交BC的延长线与点G;作GH?AD,交AD的延长线于点H.则图中下列矩形是黄金矩形的是( )
A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH
【解析】考点:黄金分割的识别
【解答】:由作图方法可知DF=5CF,所以CG=(5?1)CF,且GH=CD=2CF,从而得出黄金矩形
CG=(5?1)CF,GH=2CF ∴
CG(5?1)CF5?1 ∴矩形DCGH是黄金矩形。 ??GH2CF2变式训练3:(2014?山东济南,第14题,3分)现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是( )
A.(1,2,1,2,2) B.(2,2,2,3,3)
C.(1,1,2,2,3)D.(1,2,1,1,2)
类型四: 开放题型中的新定义
例题4:(2016山西省第19题)(本题7分)请阅读下列材料,并完成相应的任务: 阿基米德折弦定理
阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数子.
阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.
阿基米德折弦定理:如图1,AB和BC是O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.
下面是运用“截长法”证明CD=AB+BD的部分证明过程.
证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点, ∴MA=MC ...
相关推荐: