5–8 在图示结构中,钢拉杆BC的直径为10mm,试求此杆的应力。由BC连接的1和2两部分可视为刚体。 5–9 同一根杆,两端外力作用的方式不同,如图中a)、b)、c)所示。试问截面1-1、2 -2的应力分布情况是否相同?为什么?
5–10 等直杆所受的外力如图所示。杆的横截面面积A和材料的弹性模量E及l、F均已知,试求杆自由端B的位移。 5–11 长为l的变截面杆,如图所示。左右两端的直径分别为d1 、d2,杆只在两端作用着轴向拉力F,材料的弹性模量为E,试求杆的总伸长。
5–12 图示结构,AB为刚性杆,AC、BD杆材料相同E=200GPa,横截面面积皆为A=1cm2,力F=20kN,求AC 、BD杆的应力及力的作用点G的位移。
5–13 图示杆,全杆自重w=20kN,材料的弹性模量E=50GPa,已知杆的横截面面积A=1cm2,杆长l=2m,力F=20kN,计算在自重和载荷作用下杆的变形。
5–14 图示结构中,1、2两杆的直径分别为10mm和20mm,若
AB、BC两横杆皆为刚杆,试求1、2杆内的应力。
5–15 三角架如图所示。斜杆AB由两根80?80?7等边角钢组成,杆长l=2m,横杆AC由两根10号槽钢组成,材料
均为Q235钢,弹性模量E=200GPa,α=30o,力F=130kN。求节点A的位移。
5–16 打入粘土的木桩长l=12m,上端荷载F=420kN,设载荷全由摩擦力承担,且沿木桩单位长度的摩擦力f按抛物线f=Ky变化, K是常数。木桩的横截面面积A=640cm2,弹性模量E=10Gpa,试确定常数K,并求木桩的缩短量。
2
5–17 等直杆所受外力及几何尺寸如图所示。杆的横截面面积为A,两端固定。求杆的最大拉应力应力和最大压应力。
5–18 图示结构,AB为刚性横梁,1、2两杆材料相同,横截面面积皆为A=300mm2。载荷F=50kN,求1、2杆横截面的应力。
5–19 平行杆系1、2、3,悬吊着刚性横梁AB。在横梁上作用着载荷F,三杆的横截面面积A、长度l、弹性模量E均
相同。试求各杆横截面的应力。
5–20 图示桁架结构,杆1、2、3分别用铸铁、铜和钢制成,弹性模量分别为E1=160GPa、E2=100GPa、E3=200GPa,横截面面积A1= A2= A3=100mm2。载荷F=20kN。试求各杆横截面的应力。
5–21 图示结构,各杆的横截面面积、长度、弹性模量均相同,分别为A、l、E,在节点A处受铅垂方向载荷F作用。试求节点A的铅垂位移。
5–22 埋入合成树脂的玻璃纤维如图所示。求温度从–10oC升至30oC时在玻璃纤维中产生的拉应力。已知升温时玻璃纤维与合成树脂完全密接。玻璃纤维及合成树脂的横截面面积分别为A及50A,线膨胀系数分别为8×10–61/oC及20×10–61/oC,弹性模量分别为70GPa及4Ga。
5–23 图示结构中的三角形板可视为刚性板。1杆(长杆)材料为钢、2杆(短杆)材料为铜,两杆的横截面面积分别为A1= 10cm2,A2=20cm2,当F=200kN,温度升高20oC时,求1、2杆横截面的应力。(钢、铜材料的弹性模量与线膨胀系数分别为E1=200GPa ,?1=12.5×10–61/oC;E2=100 GPa ,?2=16×10–61/oC)。
5–24 一刚性梁放在三根混凝土支柱上如图所示。各支柱的横截面面积皆为400cm2,弹性模量皆为14GPa。未加载荷时,中间支柱与刚性梁之间有?=1.5mm的空隙。试求当载荷F=720kN时各支柱内的应力。
5–25 图示桁架结构,由于制造误差使BC杆比原设计短了?,试求装配后各杆的应力。已知各杆的弹性模量E、横截面面积A均相同。AB=AD=AE=l。
5–26 图中杆OAB可视为不计自重的刚体。AC与BD两杆材料、尺寸均相同,
A为横截面面积,E为弹性模量,
?为线膨胀系数,图中a及l均已知。试求当温度均匀升高?T?C时,杆AC和BD内的温度应力。
5–27 长为l、横截面面积为A的匀质等截面杆,两端分别受F1和F2作用(F1 5–28 平均直径为D的薄壁圆环,以匀角速度ω绕通过圆心且垂直于圆环平面的轴转动。若圆环材料的单位体积质量为ρ,弹性模量为E,试求圆环的动应力及平均直径D的改变量。 5–29 重W的钢球装在长为l的转臂的端部,以等角速度ω在光滑水平面上绕O旋转。若转臂的抗拉刚度为EA,试求转臂的总伸长(不计转臂的质量)。 第6章 6-1 作图示各杆的扭矩图。
相关推荐: