ruuurn?DE7sin??ruuur?.
7n?DE所以直线DE与平面ADF所成的角的正弦值为
uuruuur(Ⅲ)由已知平面ADF的法向量n1?(3,1,2),BF?(0,2,1)
uuruuur设平面BDF的一个法向量n2?(x,y,z),BD?(1,1,0)
uuruuur?n?BF?0?2??uuruuur??n2?BD?0?2y?z?0??
x?y?0?7.-------8分 7?z??2y,x??y 令y??1,则n2?(1,?1,2)……………………………………10分
设锐二面角B?DF?A的平面角为?
uuruuruuruurn1?n2621ruur|??……………11分 则cos??|cos?n1,n2?|?|uu7|n1|?|n2|14?6uur所以锐二面角B?DF?A的余弦值为18、(1)?的可能取值为0,1,2,3
21………………12分 731112111111111P(??0)????;P(??1)??????????;
432244324324324321121311113211P(??2)??????????;P(??3)????…….4’
432432432244324??的分布列为
?
P
0 1 2 3
1 241 411 241 4E(?)?0?1111123?1??2??3??……….6’ 24424412321(2)设 “甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B
111111213?2?2?2?1?2?则P(A)??C3??C???C?()?;…….8’ 3?3?????43?3?24?3?34?3?31P(AB)18111211?2??P(BA)???…12’ …10’P(AB)??C3???()?1P(A)6418?3?33119、解:(Ⅰ)在Sn??an?()12n?1?2中,令n=1,可得S1??an?1?2?a1,即a1?n?21. 2当n?2时,Sn?1??an?1?()121?2∴an?Sn?Sn?1??an?an?1?()n?1, …
2∴2an?an?1?()12n?1,即2an?2nn?1an?1?1.∵bn?2nan,∴bn?bn?1?1,即当n?2时,
bn?bn?1?1.又b1?2a1?1,∴数列{bn}是首项和公差均为1的等差数列.
于是bn?1?(n?1)?1?n?2an,∴an?(Ⅱ)∵cn?log21312nn. …………………………6分 2n2211n==-?log22n?n,∴,………………8分
ancncn+2n(n+2)nn+21413151111111??)?(?)=1??.10分
2n?1n?2n?1n?1nn?2∴Tn?(1?)?(?)?(?)???(由Tn?f(n)?25111251113????,得1??,即,
212n?1n?221n?1n?24211913?单调递减,∵f(4)?,f(5)?,∴n的最大值为4. n?1n?2204220、解:(I)∵
f?(x)?ex?x?a,∴ f?(0)?1?a.于是由题知1-a=2,解得a=-1.
x∴ f(x)?e?(II)由题意设h(x)12x?x.∴ f(0)?1,于是1=2×0+b,解得b=1.………3分 2f?(x)?0即ex?x?a?0恒成立,∴ a?ex?x恒成立.
?ex?x,则h?(x)?ex?1.
x h?(x) (-∞,0) - 减函数 0 0 极小值 (0,+∞) + 增函数 h(x) ∴ h(x)min=h(0)=1,∴ a<1.………………6分 (III)由已知g(x)?ex12122?x?ax?ax?x?ex?ax2?ax, 22∴
, g?(x)?ex?2ax?a.∵ x1,x2是函数g(x)的两个不同极值点(不妨设x1 g?(x2)?0.g?(x)?0,gx)∴ a>0(若a≤0时,即(是R上的增函数,与已知矛盾),且g?(x1)?0,∴ ex1?2ax1?a?0,ex2?2ax2?a?0. ex1?ex2两式相减得:2a?,----8分 x1?x2x?x2?ln2a,即证明e于是要证明12两边同除以e,即证即证(x1-x2)ex1?x22x2x1?x22ex1?ex2, ?x1?x2x1?x2e2x1?x2ex1?x2?1?>ex1?x2,即证(x1-x2)2ex1?x2t?1,10分 -ex1?x2?1>0,令x1-x2=t,t<0.即证不等式te2?et?1?0当t<0时恒成立. 设φ(t)?te?et?1,∴ ??(t)∵ t由(II)知e2t2t?e2t?t?e21tt??et?(?1)e2?et??e2[e2?(?1)]. 222ttttt??1,即e2?(?1)?0,∴ ?(t)<0, 22t∴ ?(t)在t<0时是减函数.∴ ?(t)在t=0处取得极小值?(0)=0. x?x∴ ?(t)>0,得证.∴ 12?ln2a.……………………13分 221、解:(Ⅰ)?PM?F2M?0 ∴点M是线段PF2的中点 ∴OM是△PF1F2的中位线 , 又OM⊥F1F2 ∴PF1⊥F1F2 ?c?1?1?1??2?2?12b?a222??a?b?c解得a2?2,b2?1,c2?1 x2∴椭圆的标准方程为?y2=1 -------- 5分 2(Ⅱ)∵圆O与直线l相切 |m|k2?1?1即m2?k2?1-----6分 ?x2??y2?1由?2?y?kx?m?消去y:(1?2k2)x2?4kmx?2m2?2?0 ∵直线l与椭圆交于两个不同点,???0?k2?0, 设A(x1,y1),B(x2,y2),则 4km2m2?2,---------7分 x1?x2??,x1?x2?1?2k21?2k2y1y2?(kx1?m)(kx2?m)m2?2k2------8分 ?kx1x2?km(x1?x2)?m?1?2k222uuuruuur1?k2OA?OB?x1?x2?y1?y2???------9分 21?2k2321?k2132Q??????k?1 ----10分 解得:?23431?2k24S?S?ABO?1?|AB|?1 2?1?1?k2?(x1?x2)2?4x1?x2214km22m2?22??1?k?(?)?4?21?2k21?2k2?2(k4?k2)设u?k4?k2,424(k?k)?12u3,u?[,2]4u?14 3则?u?2,S?43362QS关于u在[,2]单调递增,S()?,S(2)?4443?62?S? 14分 43
相关推荐: