第一范文网 - 专业文章范例文档资料分享平台

八年级数学下册第十九章一次函数知识点归纳新版新人教版

来源:用户分享 时间:2025/5/19 5:49:56 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

第十九章 一次函数

一.常量、变量:

在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。 二、函数的概念:

函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数. 三、函数中自变量取值范围的求法:

(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。 (3)用寄次根式表示的函数,自变量的取值范围是全体实数。

用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象. 五、用描点法画函数的图象的一般步骤

1、列表(表中给出一些自变量的值及其对应的函数值。) 注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。 六、函数有三种表示形式:

(1)列表法 (2)图像法 (3)解析式法 七、正比例函数与一次函数的概念:

一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。 一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例. 八、正比例函数的图象与性质:

(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。

(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。 九、求函数解析式的方法:

待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。

1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0. 2. 求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点

的横坐标 3. 一次函数与一元一次不等式:

解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.

4. 解不等式ax+b>0(a,b是常数,a≠0) . 从“形”的角度看,求直线y= ax+b在 x 轴

1

上方的部分(射线)所对应的的横坐标的取值范围. 十、一次函数与正比例函数的图象与性质 一 次 函 数 [ y=kx+b(k、b是常数,k≠0 ] 概 念 图 像 性 质 如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数. 一条直线 k>0时,y随x的增大(或减小)而增大(或减小); k<0时,y随x的增大(或减小)而减小(或增大). (1)k>0,b>0图像经过一、二、三象限; (2)k>0,b<0图像经过一、三、四象限; 直线y=kx+b(k≠0)(3)k>0,b=0 图像经过一、三象限; 的位置与k、b符号(4)k<0,b>0图像经过一、二、四象限; 之间的关系. (5)k<0,b<0图像经过二、三、四象限; (6)k<0,b=0图像经过二、四象限。 求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数一次函数表达式的y=kx(k≠0)时,只需一个点即可. 确定

一次函数重点知识归纳:

1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像

一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

2

8、函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

一次函数图形与性质

1、一次函数的定义

一般地,形如y?kx?b(k,b是常数,且k?0)的函数,叫做一次函数,其中x是自变量。当b?0时,一次函数y?kx,又叫做正比例函数。

⑴一次函数的解析式的形式是y?kx?b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.

⑵当b?0,k?0时,y?kx仍是一次函数. ⑶当b?0,k?0时,它不是一次函数.

⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质

一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 注:正比例函数一般形式 y=kx (k不为零) ① k不为零 ② x指数为1 ③ b取零

当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,?直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.

(1) 解析式:y=kx(k是常数,k≠0) (2) 必过点:(0,0)、(1,k)

(3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小 (5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴 3、一次函数及性质

一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.

注:一次函数一般形式 y=kx+b (k不为零) ① k不为零 ②x指数为1 ③ b取任意实数

一次函数y=kx+b的图象是经过(0,b)和(-

b,0)两点的一条直线,我们称它为直k线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k、b是常数,k?0) (2)必过点:(0,b)和(-(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

b,0) k?k?0?k?0直线经过第一、二、三象限 ??直线经过第一、三、四象限 ??b?0b?0?? 3

?k?0?k?0直线经过第一、二、四象限 ??直线经过第二、三、四象限 ???b?0?b?0(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.

(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴. (6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位;

当b<0时,将直线y=kx的图象向下平移b个单位. 一次 k?kx?b?k?0? 函数 k?0 k?0 k,b 符号 b?0 b?0 b?0 b?0 b?0 yyOO b?0 yOyOyOy图象 Oxxxxxx性质 y随x的增大而增大 y随x的增大而减小

4、一次函数y=kx+b的图象的画法.

根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取

它与两坐标轴的交点:(0,b),

b>0 经过第一、二、三象限 .即横坐标或纵坐标为0的点.

b<0 经过第一、三、四象限 b=0 经过第一、三象限 k>0 图象从左到右上升,y随x的增大而增大 k<0 经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限 4

图象从左到右下降,y随x的增大而减小 5、正比例函数与一次函数之间的关系

一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)

6、正比例函数和一次函数及性质 概 念 正比例函数 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数 X为全体实数 一条直线 (0,0)、(1,k) (0,b)和(-一次函数 一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,是y=kx,所以说正比例函数是一种特殊的一次函数. 自变量 范 围 图 象 必过点 b,0) k走 向 k>0时,直线经过一、三象限; k<0时,直线经过二、四象限 k>0,b>0,直线经过第一、二、三象限 k>0,b<0直线经过第一、三、四象限 k<0,b>0直线经过第一、二、四象限 k<0,b<0直线经过第二、三、四象限 增减性 倾斜度 图像的 平 移 k>0,y随x的增大而增大;(从左向右上升) k<0,y随x的增大而减小。(从左向右下降) |k|越大,越接近y轴;|k|越小,越接近x轴 b>0时,将直线y=kx的图象向上平移b个单位; b<0时,将直线y=kx的图象向下平移b个单位. 5

八年级数学下册第十九章一次函数知识点归纳新版新人教版.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0sjrw52vo46x2111f20r4n7xz5ee5l00bjx_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top