(2)证:证明相交直线夹角为异面直线所成的角.
(3)求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.
[变式训练3] 如图7-2-6,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.
图7-2-6
2 [取圆柱下底面弧AB的另一中点D,连接C1D,AD, 则因为C是圆柱下底面弧AB的中点, 所以AD∥BC,
所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,
所以C1D⊥圆柱下底面,所以C1D⊥AD. 因为圆柱的轴截面ABB1A1是正方形, 所以C1D=2AD,
所以直线AC1与AD所成角的正切值为2, 所以异面直线AC1与BC所成角的正切值为2.]
[思想与方法]
1.主要题型的解题方法
(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).
(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上.
2.判定空间两条直线是异面直线的方法
(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.
(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.
3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了转化与化归思想.
[易错与防范]
1.异面直线不同在任何一个平面内,不能错误地理解为不在某一个平面内的两条直线就是异面直线.
2.直线与平面的位置关系在判断时最易忽视“线在面内”.
3.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.
相关推荐: