垃圾填埋场沼气发电系统的优化配置
广东东莞康达新能源科技有限公司
燃气动力部、技术中心
前言
随着全球经济的高速增长,能源和环保问题日益突出。一方面,化石能源日渐枯竭,世界正面临巨大的能源压力;生存环境日渐恶劣,世界正面临巨大的环境压力。另一方面,又有巨大的能源被白白地浪费;有大量的有害物质被肆无忌惮地排放。能源和环境已经成为世界最重要的事情!“节约能源,减少排放”在很多国家被列为“基本国策”。
沼气的充分利用,是其具体措施之一。
沼气发电在发达国家已有几十年的历史,目前在世界各地受到广泛重视和积极推广。如美国的“能源农场”、德国的《可再生能源促进法》、日本的“阳光工程”、荷兰的“绿色能源”等。
我国也非常重视,在《农业法》、《节约能源法》和《可再生能源法》等一系列国家重要法律法规中,都对沼气利用提出了明确规定。
沼气利用工程是获取绿色能源、治理环境污染的更为经济实用的手段。从我国沼气产量潜力、发电技术水平、市场需求和政策导向的发展趋势来看,沼气发电产业将有突破性进展。
发电是沼气的最佳利用途径,目前已在全国各地广泛发展;而垃圾填埋场有其特殊性,发电几乎是沼气利用的唯一方式。
我国每年的城市生活垃圾量达到 1.7 亿吨,大部分采用填埋方式处理,蕴藏着大量的沼气资源。已有十余个填埋场的沼气被收集起来用于发电。
沼气发电是一个系统工程,它包括垃圾填埋操作管理、产气量的估算、沼气收集、沼气输送、沼气处理、沼气发电及电力上网以及系统配套设施等多项单元技术的组合,也涉及到国家对沼气发电的扶持政策和技术法规等。剖析国内已有的沼气发电工程,借鉴发达国家的沼气发电技术和经验,以及充分研究和利用国家对可再生能源的政策导向等,进行对垃圾填埋气体发电及其配套系统进行优化研究和应用,已成为业界日益关注和探讨的重要课题。
1、垃圾填埋场填埋操作概述
卫生填埋法是大型填埋场应用最普遍的处理技术。将垃圾倒入具有一定地形特征的场地中,通过采取防渗、覆土和气体导排设施,消除了简易填埋带来的各种安全、卫生和环境污染问题的一种最终处置技术。投资少,容量大,操作简单。但是,大部分中小规模的城市生活垃圾采用直接露天堆放、自然填沟等方式处理,不但侵占了宝贵的土地资源,而且对环境造成了潜在的影响和危害,特别是渗滤液,由于没有进行必要的收集和集中净化处理,导致水资源和环境的严重污染,而且,所产生的沼气也无法利用,浪费了大量的能源。
填埋处置方式也有明显的弱点。一是占地面积大,场地选择较困难。二是二次污染问题。处理不好的填埋场,其渗滤液和沼气对周围地区造成严重危害。因此在填埋操作过程中,可以通过以下措施来优化垃圾填埋场的填埋操作管理:
﹡提高垃圾填埋场的堆放高度可以减少占用土地; ﹡分区集中作业,有利于垃圾分解产气和收集;
﹡采用新材料、新工艺加强填埋场底部处理,并设置污水处理系统,以解决对水源的污染; ﹡在垃圾填埋之前铺设垃圾渗滤液回收管道和沼气水平或垂直管道,提高填埋场沼气的抽取效率; ﹡压实垃圾,创造厌氧环境,而且增大库容;及时覆土,阻止空气进入,防止好氧反应的发生; ﹡阻止沼气散发,充分利用能源,消除安全隐患;
﹡建立防洪体系,维持厌氧反应环境;建立渗滤液处理系统,让渗滤液能顺利排出,并得到及时处理。 抽气量控制是维持厌氧环境的一个重要因素,过度抽气会使厌氧环境失去平衡,削弱厌氧反应。有的电厂气量不够,机组运行功率又不调整,造成过抽采,甲烷浓度低于40%,还为机组能正常运转而沾沾自喜。但接下来的几个月,整个填埋场厌氧环境失去平衡后导致气量严重不足,只能停机,无异于“杀鸡取卵”。
2、垃圾填埋场产气量的估算
填埋场产生的沼气量随当地气候、地理条件及填埋场的填埋量、垃圾组份、填埋方式等因素的不同而不同,所以,各垃圾填埋场在设计沼气回收利用时应根据准确的气体产生量为依据。实际上,产生量的测定较复杂,所用仪器的费用很高。因此,探求一种理论模型来精确地估算填埋场气体中可回收利用的沼气量是非常有意义的。
2.1甲烷气体的产生及影响因素
填埋场中的垃圾,含有丰富的有机质。微生物首先进行好氧分解,消耗填埋场中的O2,产生大量的热,形成厌氧环境再厌氧分解。产生CH4及CO2。
影响甲烷产量的因素很多,主要有生活垃圾的组成、垃圾颗粒的大小、有机质含量、填埋年限、温度、含水量和湿度、渗滤液的pH值、毒素含量等。 当垃圾中有机物含量增高时,甲烷的产量则升高。
在不同温度条件下,甲烷的产生速率差异很大,一般认为在一个深的、封闭好的环境中,产生甲烷的最适温度为40℃。此时,产生速率为30℃的3倍,为背景温度18.7℃的7.8倍,但温度升高到55℃时甲烷气的产生就停止。
含水量或湿度也会影响甲烷的生成,含水量高时,各生化反应组成成分间接触程度大,可促进细菌的新陈代谢,产气量提高。甲烷的产量随湿度的高低呈曲线变化,湿度为55%时,甲烷气的产生明显高于湿度为33%的产气量,只有当湿度大于50%时才能满足甲烷生成的需要。但是,湿度过高时,甲烷气的产量会降低。
pH值的高低也会影响甲烷气的产量,最适于垃圾发酵的pH值为6.8~7.2。
此外,甲烷产量的影响因子,如垃圾湿度、渗滤液的pH值等在不同的地区、不同的小环境、不同的发酵阶段各因子对甲烷产率的影响程度也不尽相同。
2.2甲烷气体产生量与产率的计算方法 (1)质量平衡和理论产气量模型
此公式由IPCC1995年推荐,主要是用于计算生活垃圾的产气总量,其公式为: ECH4=MSW×η×DOC×r×(16/12)×0.5
式中,MSW为城市生活垃圾量;η为垃圾填埋率;DOC为垃圾中可降解有机碳的含量,IPCC推荐值发展中国家为15%,发达国家为22%;r为垃圾中可降解有机碳的分解百分率,IPCC推荐值为77%。运用该模型计算产气量快捷方便,只要知道某个城市的生活垃圾总量以及填埋率就能估算出产气量。但由于没有直接考虑垃圾产气的规律及其影响因素,往往计算值过于粗略,仅适用于估算较大范围的产气量,如一个国家、一个省或一个城市。以广州市兴丰填埋场为例,日进场垃圾6000t,年垃圾量58.4万t,那么年产甲烷气:
ECH4=6000×365×100%×15%×77%×(16/12)×0.5 =16.87×104(t/a)
相当于19.69万吨煤炭的能源潜力。 (2)理论动力学模型
N.Gardner和S.D.Probert提出下述公式:
式中,P为单位重量垃圾在时间t内的甲烷排放量,Cd为垃圾中可降解的有机碳的百分率(推荐值为0.15),X为填埋场产气中CH4分额,n为可降解组分的总数(i=1,2,3…n),Fi为各降解组分占有机碳的含量,Ki为各降解组分的降解系数,t为填埋时间。这一模型可以表征垃圾产生甲烷气随时间的动态变化,有利于对各个产气阶段的分析,从而运用这一详细资料设计收集系统。 (3)生物降解理论最大产气量模型
该方法依据垃圾成分和元素分析,并通过生化反应计算产气量,计算公式如下:
式中,C为单位质量垃圾中产生的甲烷量[L(CH4)/kg(湿垃圾)];K为经验常数,单位质量的挥发性固体物质标准状态下产生的甲烷量,其值为526.5L(CH4)/kg;Pi为某有机组分占单位质量垃圾的湿重百分比(%);Mi为某有机组分的含水率(%);Vi为某有机组分的挥发性固体含量(干重%);Ei为某有机组分中挥发性固体的可降解物的含量(%)。该方法的特点是利用了有机物的可生物降解特性,更切合实际,并能较准确地反映出垃圾中产生甲烷气的主要成分,但最终计算值偏高。
以上三种产气量模型在实际使用中各有特点,但单一的方法往往难以准确的估算填埋场的产气量,要较准确的估算垃圾填埋场的产气量,我们需要先对填埋垃圾的特点进行分析,然后利用上述模型从不同侧面进行估值,最后还得根据工程经验对评估值做出一定的修正,这样做出的估算相对较准确;对后续处理既能充分利用资源又能减少投资的盲目性。事实上,比较早期的几个项目,由于考虑因素不够,其产气量估算值严重偏大,造成了设备闲置,给投资者造成了一定的经济损失。当然,抽气试验是最可靠的。产气量是决定装机容量的最重要的依据。
3、沼气收集与输送系统
3.1 沼气收集站、阀门井
沼气收集站使操作人员可以较为方便地监控每座沼气井的流量及浓度。每2~3公顷的面积须配置一座沼气抽气收集站。沼气收集站的位置选择须考虑到填埋面沉降及输送管线架设的便利性。每座沼气站面积约需2平方米,沼气站的抽气装置高度约1.5米左右。
3.2 沼气收集系统的技术要求和优化措施
在填埋较低位置时,较多采用预留垂直导气石笼,边填埋边提升。在填埋高位时一般采用水平集气管的方式进行。然而在实际填埋过程中常遇到如下几种情况直接影响到沼气的回收。
﹡垃圾进场量不稳定,在进场量较大时,来不及保护预留的导气石笼,致使预留导气石笼被掩埋。 ﹡推进方向单一,导气石笼容易倾斜或移位。
﹡导气石笼周围未及时设置导气盲沟,导致气体收集效果差。
﹡覆盖层不规范、不及时,导致雨水渗漏入填埋层和沼气迁移外泄严重。
通过抽气实验掌握气体成分、出气静压、温度、气量、收集范围等,结合现场情况在管道布置设计中充分考虑其收集效果。由好氧——厌氧有一个过程,产气量随时间而变化,因此在设计中应充分考虑在高峰时的气量进行管径设计如果母管的负压太大,造成水封的液位上升高度增加,给系统带来安全隐患。同时在操作过程中要严格工艺要求进行,从安全角度出发,在导气石笼出口要求是微正压状态(一般在5-8mm水柱)。这样可保证沼气收集质量,不因为负压使空气进入系统,这一点非常重要,在操作过程中要定期检查、记录和调节。在导气石笼并入系统时要逐个进行,在每个导气石笼出口合格后方可并入集气单元,并确保出口压力,这里可利用出口阀节流调节。
在气体收集系统中科学布管,通常采用集气单元进行气体的收集,在集气单元设置时采用如下两只方式:(1)将几个6-8个导气石笼汇入一个气体收集站,再由气体收集站进入母管。(2)将常6-8个导气石笼汇入次母管,再进入母管。采用这两种方式都可行。但笔者认为采用第二种方式更为直接、科学和节约。
由于沼气从导气石笼出来时其水分含量较高,在气体输送过程中产生冷凝液,若采用第一种方式就必须考虑每个导气石笼——集气站的管道放坡并单独排放冷凝液,这样在今后的提升工作带来诸多不便,且投入较高。采用第二种方式只要布管时考虑布管坡度即可。在母管的低位设置排水水封并可以将冷凝液排掉。安装方便,便于控制和今后的提升。
3.3 垃圾卫生填埋场集气站、总管布置及流程:
(1)可将填埋场集气井编号,根据现场情况将其中数个集气井作为周围集气井的集气站。每个集气站单独进总管,并设置阀门。
(2)沼气经各组集气井汇集于各组集气站,经集气站出口管进入填埋场外管,再并入填埋场总管,设计中根据需要在相关位置考虑阀门。
(3)根据现场情况,集气站出口管安装时,设计时应向集气站放坡,以便将冷凝水排入填埋场内,经渗漏排出。
(4)由于集气井管线较长,为防止因局部沉降造成集气站出口总管形成\型而淤水进而造成堵管,在施工时要求总管位置尽量压实,或在填埋时将该总管采用开放式连接,只要填埋与安装配合好,便可避免堵管现象。
(5)在填埋场外设置阀组,分别控制各集气站,集气站控制每个集气单元即集气井。
(6)监控系统采用:总管流量计、在线多种气体监测仪、现场分析取样、现场压力、温度指示。设计中也要适当周边气体监测。
(7)为尽可能减少沼气对大气释放,在填埋时要有序填埋,即尽可能集中某一个集气站所辖集气井范围进行填埋,逐个进行,以避免因交叉作业而给项目带的来负面影响。 (8)设计中应考虑在总管上设计冷凝液气水排放阀。 3.4 沼气收集及浓缩分离系统:
一定数量的沼气井汇集设立成沼气收集站,每口抽气井均有控制阀可调控流量,并在适当地点汇集数口抽气井形成一个局部网络。浓缩分离装置可将沼气含水量降低并去除部份有机挥发性物质,同时在地形较低处亦可汇集冷凝水排至填埋场地下。各收集站均设有采样口便于采样分析。
3.5 气体输送管线
沼气输送管线上设有安全阀﹑压力计﹑远传系统﹑膨胀节等装置,以确保沼气输送的稳定及安全性。
3.6 沼气抽取系统的操作
当沼气抽取系统各部份并联试运转成功后,即进入正式运转阶段。并执行监控管理,针对每口井的沼气产生量,调整其抽气压力,以获得最大且稳定的沼气量,同时兼顾地表的空气回流对操作安全性的影响。通过对监控计资料的进行分析,就可以获得每口井的甲烷浓度、产气量、二氧化碳及氧气浓度等数值。
3.7 HDPE沼气抽取管线
3.8 冷凝水集排设施
沼气本身含有一定比例的水分,在输送过程会汇集在输送管线的低洼处阻塞管线。我们在集气站底部配置冷凝水集排设施。冷凝水集排设施设置于地面下,可将冷凝水回注进填埋场内,以避免造成二次环境污染。
4、气体预处理系统 4.1 系统功能:
填埋气的主要成份是甲烷和二氧化碳。它们都是无色无味的。带气味的物质来自于微量成份,如挥发性芳烃化合物和硫基物。不同填埋场的气体确切组成有很大不同。但是,总的来说,管理良好的填埋场,
相关推荐: