第一范文网 - 专业文章范例文档资料分享平台

2019年全国各地中考数学试题分类汇编(一) 专题36 规律探索(含解析)

来源:用户分享 时间:2025/5/29 15:24:12 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

规律探索

一.选择题

1. (2019?山东省济宁市 ?3分)已知有理数a≠1,我们把

称为a的差倒数,如:2的差倒数是

=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3

的差倒数……依此类推,那么a1+a2+…+a100的值是( ) A.﹣7.5

【考点】数字的变化

【分析】求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,且﹣2++=﹣,再求出这100个数中有多少个周期,从而得出答案. 【解答】解:∵a1=﹣2, ∴a2=

=,a3=

=,a4=

=﹣2,……

B.7.5

C.5.5

D.﹣5.5

∴这个数列以﹣2,,依次循环,且﹣2++=﹣, ∵100÷3=33…1,

∴a1+a2+…+a100=33×(﹣)﹣2=﹣故选:A.

【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 2. (2019?广东深圳?3分)定义一种新运算:

m=﹣7.5,

?abn?xn?1dx?an?bn,例如:?2?xdx?k2?h2,若

hk?5m?x?2dx??2,则m=( )

A. -2 B. ?【答案】B

22 C. 2 D. 55

【解析】

?m5m?x?2dx?m?1?(5m)?1?112???2,则m=?,故选B.

5m5m3.(2019,山东枣庄,3分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )

A. B. C. D.

【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得. 【解答】解:由题意知,原图形中各行、各列中点数之和为10, 符合此要求的只有

故选:D.

【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.

4. (2019?湖北十堰?3分)一列数按某规律排列如下:,,,,,,,,,,…,

若第n个数为,则n=( ) A.50

B.60

C.62

D.71

【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.

【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),

(,,,),…, ∴分母为

11

开头到分母为

1

的数有,

11

个,分别为

∴第n个数为,则n=1+2+3+4+…+10+5=60, 故选:B.

【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.

5. (2019?湖北武汉?3分)观察等式:2+2=2﹣2;2+2+2=2﹣2;2+2+2+2=2﹣2…已知按一定规律排列的一组数:2、22…、22.若2=a,用含a的式子表示这组数的和是( ) A.2a﹣2a

2

50

51.52.

99.100

50

2

3

2

3

4

2

3

4

5

B.2a﹣2a﹣2

2

3

2

3

4

2

C.2a﹣a

2

3

4

5

2

D.2a+a

2

3

2

【分析】由等式:2+2=2﹣2;2+2+2=2﹣2;2+2+2+2=2﹣2,得出规律:2+2+2+…+2=2

50

51

52

99

100

2

3

100

2

3

49

nn+1

﹣2,那么2+2+2+…+2+2=(2+2+2+…+2)﹣(2+2+2+…+2),将规律代入计算即可. 【解答】解:∵2+2=2﹣2; 2+2+2=2﹣2; 2+2+2+2=2﹣2; …

∴2+2+2+…+2=2﹣2, ∴2+2+2+…+2+2

=(2+2+2+…+2)﹣(2+2+2+…+2) =(2﹣2)﹣(2﹣2) =2﹣2,

101

50101

50

2

3

100

2

3

49

50

51

52

99

100

2

3

2

3

4

5

2

3

4

2

3

nn+1

∵2=a,

∴2=(2)?2=2a, ∴原式=2a﹣a. 故选:C.

【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+2+2+…+2=2﹣2. 二.填空题

1. (2019?江苏连云港?3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1.2.3.4.5.6.7.8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为 (2,4,2) .

2

3

2

101

50

2

2

50

nn+1

【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论. 【解答】解:根据题意得,点C的坐标可表示为(2,4,2), 故答案为:(2,4,2).

【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键. 2.(2019?浙江衢州?4分)如图,由两个长为2,宽为1的长方形组成“7”字图形。

(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于

x轴上,顶点B,D位于y轴上,O为坐标原点,则 的值为________ .

(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1 , 摆放第三个“7”字图形得顶点F2 , 依此类推,…,摆放第a个“7”字图形得顶点Fn-1 , …,则顶点F2019的坐标为________ . 【答案】 (1)

(2)( , )

【考点】探索图形规律

【解析】(1)依题可得,CD=1,CB=2, ∵∠BDC+∠DBC=90°,∠OBA+∠DBC=90°, ∴∠BDC=∠OBA, 又∵∠DCB=∠BOA=90°, ∴△DCB∽△BOA, ∴

( 2 )根据题意标好字母,如图,

依题可得:

CD=1,CB=2,BA=1,

∴BD=

由(1)知

∴OB= ,OA= ,

易得:

△OAB∽△GFA∽△HCB,

∴BH= ,CH= ,AG= ,FG= ,

∴OH= + = ,OG= + = ,

∴C( , ),F( , ),

∴由点C到点F横坐标增加了 ,纵坐标增加了 ,

……

∴Fn的坐标为:( + n, + n),

∴F2019的坐标为:( + ×2019, + ×2019)=( ,405 ),

故答案为: ,( ,405 ).

【分析】(1)根据题意可得CD=1,CB=2,由同角的余角相等得∠BDC=∠OBA,根据相似三角形判定得△DCB∽△BOA,由相似三角形性质即可求得答案.(2)根据题意标好字母,根据题意可得CD=1,CB=2,

BA=1,在Rt△DCB中,由勾股定理求得

BD= ,由(1)知 ,从而可得OB= ,OA= ,结合题意易得:△OAB∽△GFA∽△HCB,根据相似三角形性质可得BH= ,CH= ,AG= ,FG= ,从而

可得

C( , ),F( , ),观察这两点坐标知由点C到点F横坐标增加了 ,

纵坐标增加了 ,依此可得出规律:Fn的坐标为:( + n, + n),将n=2019

代入即可求得答案.

3. (2019甘肃省天水市)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有______个〇.

18.【答案】6058

【解析】

解:由图可得,

第1个图象中〇的个数为:1+3×1=4, 第2个图象中〇的个数为:1+3×2=7, 第3个图象中〇的个数为:1+3×3=10,

第4个图象中〇的个数为:1+3×4=13, ……

∴第2019个图形中共有:1+3×2019=1+6057=6058个〇, 故答案为:6058.

根据题目中的图形,可以发现〇的变化规律,从而可以得到第2019个图形中〇的个数. 本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.

www.czsx.com.cn

4. (2019甘肃省陇南市)(4分)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是 13a+21b .

【分析】由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案. 【解答】解:由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b, 故答案为:13a+21b.

【点评】本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.

5. (2019?甘肃武威?4分)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是 13a+21b .

【分析】由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案. 【解答】解:由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b, 故答案为:13a+21b.

【点评】本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.

6. (2019?广东?4分)如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,

小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含A.b代数式表示).

【答案】a+8b

【解析】每个接触部分的相扣长度为(a-b),则下方空余部分的长度为a-2(a-b)=2b-a,3个拼出来

的图形有1段空余长度,总长度=2a+(2b-a)=a+2b;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a)=a+4b;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a)=a+6b;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a)=a+8b. 【考点】规律探究题型

7. (2019?甘肃?3分)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n= 1010 .

【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案. 【解答】解:根据题意分析可得:第1幅图中有1个. 第2幅图中有2×2﹣1=3个. 第3幅图中有2×3﹣1=5个. 第4幅图中有2×4﹣1=7个. ….

可以发现,每个图形都比前一个图形多2个. 故第n幅图中共有(2n﹣1)个. 当图中有2019个菱形时, 2n﹣1=2019,

n=1010,

故答案为:1010.

【点评】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.

8.(2019,山东枣庄,4分)观察下列各式:

=1+

=1+(1﹣),

=1+=1+(﹣),

=1+=1+(﹣),

请利用你发现的规律,计算:

+

+

+…+

其结果为 2018 .

【分析】根据题意找出规律,根据二次根式的性质计算即可. 【解答】解:

+

+

+…+

=1+(1﹣)+1+(﹣)+…+1+(﹣)

=2018+1﹣+﹣+﹣+…+﹣

=2018,

故答案为:2018.

【点评】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题的关键.

9.(2019,山东淄博,4分)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.

如图1,当CD=AC时,tanα1=;

如图2,当CD=AC时,tanα2=;

如图3,当CD=AC时,tanα3=……

依此类推,当CD=

AC(n为正整数)时,tanαn= .

【分析】探究规律,利用规律解决问题即可.

【解答】解:观察可知,正切值的分子是3,5,7,9,…,2n+1,

分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,

中的中间一个.

∴tanαn==.

故答案为:.

【点评】本题考查规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.

10.(2019?湖北黄石?3分)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵,则第20行第19个数是 625 .

【分析】根据题目中的数据和各行的数字个数的特点,可以求得第20行第19个数是多少,本题得以解决.

【解答】解:由图可得,

第一行1个数,第二行2个数,第三行3个数,…,则前20行的数字有:1+2+3+…+19+20=210个数,

∴第20行第20个数是:1+3(210﹣1)=628, ∴第20行第19个数是:628﹣3=625, 故答案为:625.

【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中的数字的变化特点,知道

第n个数可以表示为1+3(n﹣1).

11.(2019?贵州黔东?3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第 3 个箭头方向相同(填序号).

【分析】根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形. 【解答】解:2019÷4=504…3,

故第2019个图案中的指针指向与第3个图案相同, 故答案为:3

【点评】主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键. 12. (2019?湖南怀化?4分)探索与发现:下面是用分数(数字表示面积)砌成的“分数墙”,则整面“分数墙”的总面积是 n﹣1 .

【分析】由题意“分数墙”的总面积=2×+3×+4×+…+n×=n﹣1.

【解答】解:由题意“分数墙”的总面积=2×+3×+4×+…+n×=n﹣1, 故答案为n﹣1.

【点评】本题考查规律型问题,有理数的混合运算等知识,解题的关键是理解题意,灵活运用所学知识解决问题.

13. (2019?山东省滨州市 ?5分)观察下列一组数:

a1=,a2=,a3=,a4=,a5=,…,

它们是按一定规律排列的,请利用其中规律,写出第n个数an= (用含n的式子表示)

【考点】数字的变化类

【分析】观察分母,3,5,9,17,33,…,可知规律为2+1;观察分子的,1,3,6,10,15,…,可知规律为

,即可求解;

nn【解答】解:观察分母,3,5,9,17,33,…,可知规律为2+1, 观察分子的,1,3,6,10,15,…,可知规律为

∴an==;

故答案为;

【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.

14. (2019?山东省聊城市?3分)数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,….,An.(n≥3,n是整数)处,那么线段

AnA的长度为 4﹣ (n≥3,n是整数).

【分析】根据题意,得第一次跳动到OA的中点A1处,即在离原点的长度为×4,第二次从A1点跳

动到A2处,即在离原点的长度为()×4,则跳动n次后,即跳到了离原点的长度为()×4

2n=,再根据线段的和差关系可得线段AnA的长度.

【解答】解:由于OA=4,

所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,

同理第二次从A1点跳动到A2处,离原点的()×4处,

2

同理跳动n次后,离原点的长度为()×4=

n,

故线段AnA的长度为4﹣(n≥3,n是整数).

故答案为:4﹣.

【点评】考查了两点间的距离,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.

三.解答题

1.(2018?广西池河?3分)a1,a2,a3,a4,a5,a6,…,是一列数,已知第1个数a1=4,第5个数a5

=5,且任意三个相邻的数之和为15,则第2019个数a2019的值是 6 .

【分析】由任意三个相邻数之和都是15,可知a1.a4.a7.…a3n+1相等,a2.a5.a8.…a3n+2相等,a3.a6.a9.…

a3n相等,可以得出a5=a2=5,根据a1+a2+a3=15得4+5+a3=15,求得a3,进而按循环规律求得结果.

【解答】解:由任意三个相邻数之和都是15可知:

a1+a2+a3=15, a2+a3+a4=15, a3+a4+a5=15,

an+an+1+an+2=15,

可以推出:a1=a4=a7=…=a3n+1,

a2=a5=a8=…=a3n+2, a3=a6=a9=…=a3n,

所以a5=a2=5, 则4+5+a3=15, 解得a3=6, ∵2019÷3=673, 因此a2017=a3=6. 故答案为:6.

【点评】此题主要考查了规律型:数字的变化类,关键是找出第1.4.7…个数之间的关系,第2.5.8…个数之间的关系,第3.6.9…个数之间的关系.问题就会迎刃而解.

2. (2019?山东省济宁市 ?8分)阅读下面的材料:

如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2, (1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数; (2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数. 例题:证明函数f(x)=(x>0)是减函数.

证明:设0<x1<x2,

f(x1)﹣f(x2)=﹣==.

∵0<x1<x2,

∴x2﹣x1>0,x1x2>0. ∴

>0.即f(x1)﹣f(x2)>0.

∴f(x1)>f(x2).

∴函数f(x)═(x>0)是减函数. 根据以上材料,解答下面的问题: 已知函数f(x)=

+x(x<0),

f(﹣1)=+(﹣1)=0,f(﹣2)=+(﹣2)=﹣

(1)计算:f(﹣3)= ﹣ ,f(﹣4)= ﹣ ;

(2)猜想:函数f(x)=+x(x<0)是 增 函数(填“增”或“减”);

(3)请仿照例题证明你的猜想.

【分析】(1)根据题目中函数解析式可以解答本题; (2)由(1)结论可得;

(3)根据题目中例子的证明方法可以证明(1)中的猜想成立. 【解答】解:(1)∵f(x)=

+x(x<0),

∴f(﹣3)=﹣3=﹣,f(﹣4)=﹣4=﹣

故答案为:﹣,﹣

(2)∵﹣4<﹣3,f(﹣4)>f(﹣3)

∴函数f(x)=+x(x<0)是增函数

故答案为:增 (3)设x1<x2<0, ∵f(x1)﹣f(x2)=

+x1﹣

﹣x2=(x1﹣x2)(1﹣

∵x1<x2<0,

∴x1﹣x2<0,x1+x2<0, ∴f(x1)﹣f(x2)<0 ∴f(x1)<f(x2) ∴函数f(x)=

+x(x<0)是增函数

【点评】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.

3.(2019安徽)(8分)观察以下等式: 第1个等式:=+,

第2个等式:=+,

第3个等式:=+,

第4个等式:=+,

第5个等式:=+……

按照以上规律,解决下列问题: (1)写出第6个等式:

(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.

【分析】(1)根据已知等式即可得; (2)根据已知等式得出规律

,再利用分式的混合运算法则验证即可.

【解答】解:(1)第6个等式为:,

故答案为: (2)

证明:∵右边=∴等式成立, 故答案为:

=左边.

【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出律,并熟练加以运用.

的规

7、我们各种习气中再没有一种象克服骄傲那麽难的了。虽极力藏匿它,克服它,消灭它,但无论如何,它在不知不觉之间,仍旧显露。——富兰克林 8、女人固然是脆弱的,母亲却是坚强的。——法国 9、慈母的胳膊是慈爱构成的,孩子睡在里面怎能不甜?——雨果 10、母爱是多么强烈、自私、狂热地占据我们整个心灵的感情。——邓肯 11、世界上一切其他都是假的,空的,唯有母亲才是真的,永恒的,不灭的。——印度

2019年全国各地中考数学试题分类汇编(一) 专题36 规律探索(含解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0ujp58qlca3y3j84vsq02xzhu2kzfw009qh_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top