如对您有帮助,欢迎下载支持,谢谢!
.265.4.6y.811.27075x8085
(2)负相关关系 (3)
Source SS df MS Number of obs = 9 F( 1, 7) = 24.67 Model .638118686 1 .638118686 Prob > F = 0.0016 Residual .181036906 7 .025862415 R-squared = 0.7790 Adj R-squared = 0.7474 Total .819155592 8 .102394449 Root MSE = .16082 y Coef. Std. Err. t P>|t| [95% Conf. Interval] x -.0704144 .0141757 -4.97 0.002 -.1039346 -.0368941 _cons 6.017831 1.05226 5.72 0.001 3.529632 8.50603
(4)估计的斜率系数为-7.0414,表示航班的正点率每提高1%,百万名乘客的投诉次数会下降:7.0414*0.01=0.070414次。
(5)如果xf?0.8,则yf?6.0178?7.0414*0.8?0.38468次 3.
16
如对您有帮助,欢迎下载支持,谢谢!
Results of multiple regression for y
Summary measures
Multiple R 0.9521 R-Square 0.9065 Adj R-Square 0.8910 StErr of Est 3.3313
ANOVA Table
Source df SS
MS F p-value Explained 3 1937.7485 645.9162 58.2048
0.0000
Unexplained 18
199.7515
11.0973
Regression coefficients
Coefficient
Std Err t-value p-value Lower limit
Constant 32.9931 3.1386 10.5121 0.0000 26.3991 x1 0.0716 0.0148 4.8539 0.0001 0.0406 x2 16.8727 3.9956 4.2228 0.0005 8.4782 x3
17.9042
4.8869
3.6637 0.0018
7.6372
4.
Source SS df MS Number of obs = 29 F( 1, 27) = 3034.13 Model 2.9873e+10 1 2.9873e+10 Prob > F = 0.0000 Residual 265831846 27 9845623.91 R-squared = 0.9912 Adj R-squared = 0.9909 Total 3.0139e+10 28 1.0764e+09 Root MSE = 3137.8 consump Coef. Std. Err. t P>|t| [95% Conf. Interval] gnp .5459054 .0099106 55.08 0.000 .5255705 .5662403 _cons 2426.563 809.8789 3.00 0.006 764.829 4088.298 Source SS df MS Number of obs = 29 F( 1, 27) = 3034.13 Model 2.9873e+10 1 2.9873e+10 Prob > F = 0.0000 Residual 265831769 27 9845621.08 R-squared = 0.9912 Adj R-squared = 0.9909 Total 3.0139e+10 28 1.0764e+09 Root MSE = 3137.8 consump Coef. Std. Err. t P>|t| [95% Conf. Interval] gnpf .5459054 .0099106 55.08 0.000 .5255705 .5662403 _cons 131260.2 1869.528 70.21 0.000 127424.3 135096.2 17
Up
如对您有帮助,欢迎下载支持,谢谢!
5.
Source SS df MS Number of obs = 28 F( 2, 26) =12845.95 Model 6.2442e+10 2 3.1221e+10 Prob > F = 0.0000 Residual 63190678.2 26 2430410.7 R-squared = 0.9990 Adj R-squared = 0.9989 Total 6.2505e+10 28 2.2323e+09 Root MSE = 1559 consump Coef. Std. Err. t P>|t| [95% Conf. Interval] gnp .1325853 .0398154 3.33 0.003 .0507435 .2144272 consump_lag .8546615 .0781069 10.94 0.000 .6941105 1.015213
Source SS df MS Number of obs = 28 F( 2, 25) = 8120.05 Model 2.9088e+10 2 1.4544e+10 Prob > F = 0.0000 Residual 44777396.2 25 1791095.85 R-squared = 0.9985 Adj R-squared = 0.9983 Total 2.9132e+10 27 1.0790e+09 Root MSE = 1338.3 consump Coef. Std. Err. t P>|t| [95% Conf. Interval] gnp .1603467 .0352595 4.55 0.000 .0877283 .2329651 consump_lag .7797504 .0710054 10.98 0.000 .633512 .9259889 _cons 1211.364 377.8058 3.21 0.004 433.2588 1989.47 Source SS df MS Number of obs = 29 F( 1, 27) = 123.97 Model .043595009 1 .043595009 Prob > F = 0.0000 Residual .009495109 27 .000351671 R-squared = 0.8212 Adj R-squared = 0.8145 Total .053090118 28 .001896076 Root MSE = .01875 consump_ra~o Coef. Std. Err. t P>|t| [95% Conf. Interval] gnp -6.59e-07 5.92e-08 -11.13 0.000 -7.81e-07 -5.38e-07 _cons .6662515 .0048402 137.65 0.000 .6563202 .6761829
7. 解
(1)样本容量:n?dfTSS?1?15
(2)RSS?TSS?ESS?66042?65965?77 (3)dfRSS?n?k?15?3?12,dfESS?k?1?2 (4)R2?ESS65965n?114??0.9988,R2?1??1?R2??1??1?0.9988??0.9986 TSS66042n?k1218
如对您有帮助,欢迎下载支持,谢谢!
(5)用F检验:F?ESS/?k?1?65965/2??5140,F0.05?2,12??3.89
RSS/?n?k?77/12x2,x3整体对y有显著影响,但不能确定单个对y的贡献。
19
相关推荐: