连接等)。
4.
光纤通信
光纤通信就是利用光导纤维传递光脉冲来进行通信,而光导
纤维是光纤通信的媒体。
光导纤维(光纤)是一种能够传导光信号的极细(50μm~100μm)而柔软的介质。常用的光纤材料有:超纯二氧化硅、多成份玻璃纤维、塑料纤维。光纤的模截面为圆形,由纤芯、包层两部分构成,二者由两种光学性能不同的介质构成。其中,纤芯为光通路;包层由多层反射玻璃纤维构成,用来将光线反射到纤芯上。实用的光缆外部还须有一个保护层。每一纤芯及包层或紧或松地被外壳包裹着。在紧型结构中,光纤被外层塑料壳完全包住;在松型结构中,光纤与保护壳之间有一层胶体或其他材料。无论哪一种结构,外壳都是起着提供必要的光缆强度的作用,以防止光纤受外界温度、弯曲、外拉等影响而折断。
从传输点模数来分,光纤可以分为单模和多模两种传输方式,单模提供单条光通路;多模光纤,即发散为多路光波,每一路光波走一条通路。单模光纤因为衰减小而具有更大的容量,但是它的生产要比多模光纤昂贵。
光纤在任何时间都只能单向传输,因此,要实行双向通信,它必须成对出现,一个用于输入,一个用于输出,光纤两端接到光学接口上。
光纤与同轴电缆通信系统性能的比较:
1. 光纤的传输系统比同轴电缆大的多,一般小同轴电缆的最大传输带宽为20MHz左右,中同轴电缆的最大传输带宽为60MHz左右。而目前一般工程实用的梯度多模光纤和单模光纤的带宽都比同轴电缆的带宽大得多。表一为同轴电缆与目前国际上发达国家已工程实用的较先进的光纤带宽比较。 色散Ps/Km?nm 单模光纤 最大带宽 (MHz,Km) 最大带宽(MHz) 梯度多模光纤 小同轴中同轴电缆 电缆 1000 2000 20 60 工作波长(微0.85 米) 1.3 零色散波长1.3 (微米) 3.0(1.3微米) 17(1.55微米) 1.55 2.5/1.55微米 从表中可知,从现在已工程实用化的光纤来说,已不但能满足目前电话、数据、文字和图像等带宽综合业务信息的传输要求,而且还可以适应预见的将来信息业务日益发展的需求,可以这样说,光纤是目前有线通信传输介质中最良好的传输介质,一但当光缆敷设以后,通过频分,时分和波分复用,传输容量可以管用几十年,具有良好的技术经济性能。
2.光纤的传输衰耗要比同轴电缆小的多,而且光纤的传输衰耗不像同轴电缆那样随频率和温度而变。所以光纤通信不需要
同轴电缆通信那样复杂的频率和温度均衡。这样,光纤通信设备就可做得比较简单。表二为国际上先进的,有代表性的光纤传输衰耗。 最大传输衰耗(dB/Km) 梯度多模光纤 常规单模光纤 色散移位单模光纤 工作波长 (微米) 0. 85 2.2 1.3 0.5 零色散波长1.3 (微米) 0. 4(1.3 微米) 0.25(1.55微米) 1.55 0.2 光纤通信的中继间距比同轴电缆长的多,长途通信中中继器数量的减少就使系统的可靠性得到较大的提高,这对于海底光缆通信和国防长途通信具有特别重要的意义。
3.光纤的抗电磁干扰能力比同轴电缆强的多,由于光纤是绝缘材料,只能导光而不能导电,所以,光纤不受电磁干扰。光纤的抗电磁干扰能力对现代通信网十分重要,既可以防止外部干扰信号的影响,又可以防止电磁波辐射而受到窃听,这样就可大大的提高现代通信网的完全性和保密性。
4.光纤还有一项同轴电缆所没有的独特性能,即光纤可波分复用。目前光纤已有三个波长区(0.85微米短波长区,1.3微
米和1.55微米两个长波长区)。由于上述三个波区中的每一个波长都有几百兆赫以上的带宽,所以一根光纤通过波分复用就可得到非常巨大的传输容量。
从上面的这些光纤特性来看,光纤是现代有线通信最理想的传输介质。
以上介绍的几种传输介质都是有线传输介质,但有线介质不可能在任何时候都满足要求。例如,当通信线路要通过某些建筑物、一座高山或一个岛屿时、施工挖掘、铺设电缆往往是费时又费钱,因而需要自由空间做通信介质,进行数据的通信。这就是下面要介绍的无线通信和卫星通信。
二.无线通信
无线通信包括红外通信,激光通信和微波通信。由于它们都是沿直线传播的,有时也称它们为视线媒体,因为这三种技术都需要在发送方面和接受方面有一条视线通路。红外通信和激光通信将要传输的信号分别转换成红外光信号和激光信号,直接在空间传播。微波的频率范围为300MHz~300GHz,但主要是使用2~40GHz的频率范围,在自由空间主要是直线传播。
下面主要介绍微波通信的特点:
由于微波会穿透电离层而进入宇宙空间,因此微波通信分为两种主要方式:地面微波接力通信和卫星通信。
1. 地面微波接力通信
相关推荐: