第一范文网 - 专业文章范例文档资料分享平台

桥岛隧组合跨海通道的最新建设技术 - 图文 

来源:用户分享 时间:2025/5/23 12:02:38 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

Engineering5(2019)15–21Contents lists available at ScienceDirectEngineeringEngineeringAchievements

State-of-the-ArtTechnologyintheConstructionofSea-CrossingFixedLinkswithaBridge,Island,andTunnelCombination

YaojunGe,YongYuan

StateKeyLaboratoryofDisasterReductioninCivilEngineering,TongjiUniversity,Shanghai200092,China1.IntroductionIngeneral,twokindsofstructuresareusedtoprovideawayacrossariver,canal,sea,orotherobstacle:bridgestructuresthatpassovertheobstacle,andtunnelstructuresthatpassbelowtheobstacle.Althoughtheconstructionofbothbridgesandtunnelscanbetracedbackoverthousandsofyears,bridge–tunnelcombinationsthatuseanislandasasea-crossing?xedlink(SCFL)haveonlybeenbuiltoverthepast82years.The?rstsuchcombinationwasprobablythe6.4kmlongSanFrancisco–OaklandBayBridgeintheUnitedStates,whichwascompletedin1936.ThemostrecentlyconstructedSCFLcombiningabridge,tunnel,andislandistheHongKong–Zhuhai–Macau(HZM)Bridge,whichopenedfortraf?conOctober24,2018withthelongestSCFLcombinationintheworld,atatotallengthof29.6km.Overthe82-yearconstructionhistoryofSCFLcombinations,10famousprojectshavebeenbuiltaroundtheworld[1].AftertheSanFrancisco–OaklandBayBridge,theHamptonRoadsBridge–Tunnel,alsointheUnitedStates,wasthesecondSCFLcombinationtobeconstructed.ThisSCFLcombinationis9.72kmlongandwascompletedin1956;itwasthe?rstSCFLtobebuiltwithanarti?cialislandbetweenthebridgesectionandthetunnelsection.Next,builtintheUnitedStatesin1964,theChesapeakeBayBridge–TunnelwasthelongestSCFLcombinationuntiltherecentcompletionoftheHZMBridge.TheChesapeakeBayBridge–Tunnelprojectincludes22.2kmofbridge,3.2kmoftunnel,andfourarti?cialislands.Duringthe1990s,threebridge–island–tunnel(BIT)combinationprojectswerecompletedaroundtheworld:theMonitor–MerrimacMemorialBridge–TunnelintheUnitedStates,theTrans-TokyoBayHighwayinJapan,andtheGreatBeltFixedLinkinDenmark.Inthe21stcentury,threemoreBITcombinationprojectshavebeenconstructedthusfar,inadditiontotheHZMBridge:the?resundFixedLinklinkingDenmarktoSweden,theShanghaiYangtzeRiverTunnelandBridgeinChina,andtheBusan–GeojeFixedLinkinKorea.Table1providesbasicinformationonthese10SCFLswithaBITcombination.SinceanSCFLcombinationisusuallycomprisedofoneormorebridges,tunnels,andnaturalorarti?cialislands,alongwiththeconnectionsbetweenthesecomponents,theconstructiontechnologyforanSCFLsystemmustincludekeytechniquesforbuildingbridges,tunnels,andarti?cialislands.InordertomakeacomparisonbetweentheHZMBridgeandotherSCFLswithaBITcombination,astate-of-the-artreviewoftheconstructiontechnologyhasbeenperformedonthebridges,tunnels,andarti?cialislandsofeightoftheabovementionedprojects,inadditiontotheHZMBridge,theMonitor–MerrimacMemorialBridge–Tunnelwasleftoutofthecomparisonbecausedetailedinformationonthisprojectwaslacking.2.Sea-crossingbridgeconstructionComparedwithmanyotherbridges,sea-crossingbridgeswithaBITcombinationhaveseveralsigni?cantcharacteristics,suchasalonglength,largespan,anddeepfoundation;theyalsoencounterspeci?cconditions,suchascorrosiveconditionsandasevereconstructionenvironment,whichmayin?uencetheirdesignandconstruction.Consideringtheseaspects,Table2comparesthestate-of-the-arttechnologiesthatwereusedtoconstructthesesea-crossingbridges,includingnavigationalchannelbridges,non-navigationalapproachbridges,anddeepfoundations.2.1.NavigationalchannelbridgesAlthoughthemainnavigationalchannelofaBITcombinationliesabovethetunnel,bridgeswithlargespanscanhaveoneormoreothernavigationalchannelspositionedunderthemainchannel.Theeightcombinationprojectsinthiscomparisoninvolvefourkindsofnavigationalbridges:girderbridges,trussbridges,cable-stayedbridges,andsuspensionbridges(Table2).Agirderbridgeisthesimplestandmostwidelyusedtypeofbridge,withasimplysupportedandcontinuoussystem.ThelongestgirderbridgeisthenavigationalchannelbridgeoftheTrans-TokyoBayHighway—a10spancontinuoussteelboxgirderbridgewithamaximumspanof240m.Afterthecompletionofthesuperstructure,avortex-inducedvibration(VIV)withanamplitudeofover0.5mwasobserved.Inordertosuppressthisvibration,16tunedmassdampers(TMDs),asshowninFig.1,wereinstalled.ThiswasoneoftheearliestapplicationsofTMDsinVIVcontrol[2].TheShanghaiYangtzeRiverTunnelandBridgehas16Table1

TenSCFLswithaBITcombination.

NameY.Ge,Y.Yuan/Engineering5(2019)15–21Dateofcompletion19361957196419921997199720002009201020181936–2018Bridgelength(km)3.141+3.102=6.2435.619+3.2=22.25.14.46.790+6.611=13.4017.84516.61.87+1.65=3.5222.93.52–22.9NumberofislandsTunnellength(km)0.1602.06+2.06=4.121.6+1.6=3.21.4639.68.0244.0508.93.26.70.160–9.6Totallength(km)6.4039.7225.46.56314.021.42511.89525.56.7229.66.403–29.612345678910SummarySanFrancisco–OaklandBayBridge(USA)HamptonRoadsBridge–Tunnel(USA)ChesapeakeBayBridge–Tunnel(USA)Monitor–MerrimacMemorialBridge–Tunnel(USA)Trans-TokyoBayHighway(Japan)GreatBeltFixedLink(Denmark)?resundFixedLink(DenmarktoSweden)ShanghaiYangtzeRiverTunnelandBridge(China)Busan–GeojeFixedLink(Korea)HZMBridge(China)TenprojectsOnenaturalislandOnearti?cialislandFourarti?cialislandsTwoarti?cialislandsOnearti?cialislandOnenaturalislandOnearti?cialislandOnenaturalislandTwonaturalislandsTwoarti?cialislandsOnetofourislandsTable2

AcomparisonofthetechnologiesusedtobuildeightSCFLswithaBITcombination.

Name12345678SummarySanFrancisco–OaklandBayBridgeHamptonRoadsBridge–TunnelChesapeakeBayBridge–TunnelTrans-TokyoBayHighwayGreatBeltFixedLink?resundFixedLinkShanghaiYangtzeRiverTunnelandBridgeBusan–GeojeFixedLinkEightprojectsNavigationalchannelbridge2?704msuspensionbridges427mcantilevertruss—140msteeltrussspan2?240mcontinuoussteelbox-boxgirders1624msuspensionbridge490mcable-stayedbridge730mcable-stayedbridge220mPCboxgirder475mcable-stayedbridge2?230mcable-stayedbridgeFourbridgetypesNon-navigationalapproachbridge48mconcretegirder24mconcretegirder23mconcretegirder130msteelbox-boxgirder80msteelboxgirder110mconcretegirder193msteelboxgirder140mcompositegirder120mcompositegirder105mcompositegirder90mcompositegirderThreematerialsDeepfoundationPilesPilesPCcylindricalpilesPilesRCcaissonsRCcaissonsPilesSteelcaissonsTwofoundationtypesPC:prestressedconcrete;RC:reinforcedconcrete.thesecondlongestgirderbridge—acontinuousprestressedcon-crete(PC)boxgirderbridgewithacentralspanof220m[3].Steeltrussbridgeswereacommontypeofbridgeconstructionfromthe1870stothe1930s,andwereusedasthenavigationalchannelbridgesintheSanFrancisco–OaklandBayBridge,whichwasbuiltin1936.Theoriginaleasternsectionofthebridgewascomposedof?vethrough-trussspans,atrusscauseway,andadoublebalancedcantileverspanof427m(thethirdlongestofitstime),allwithdoubledecks[4].TheChesapeakeBayBridge–Fig.1.Atunedmassdamper.Tunneladoptedsteeltrussgirdersspanning140mforitsnavigationalchannelbridge[5].Asteeltrussandconcreteslabcompositegirderwithamaximumspanof140mwasalsousedinthe?resundFixedLinkin2000[6].Astheyoungestbridgetypecreatedin1955,cable-stayedbridgeshavebeenwidelyusedassea-crossingnavigationalchannelbridgesinrecentprojects.The?resundFixedLinkadoptedadouble-deckcable-stayedbridgewithaspanof490mandveryheavyloadsforbothhighwayandrailway;thisprojectwasthelongestrailwaycable-stayedbridgeatthattime[6].About10yearslater,theShanghaiYangtzeRiverTunnelandBridgewasbuiltwitha730mtwinboxgirdercable-stayedbridge[7],andtheBusan–GeojeFixedLinkwasbuiltwithtwocable-stayedbridges,includinga475mmain-spanbridgeandabridgewithtwomainspansof230m[8].AlthoughtheseeightBITcombinationprojectsincludeonlytwosuspensionbridges,majorcontributionshavebeenmadetobridgeconstructiontechnologybythedevelopmentofsea-crossingsuspensionbridgeswithlongspans.ThewesternsectionoftheSanFrancisco–OaklandBayBridgecontainstwosinglemain-spansuspensionbridgeunitswith701mspans—thesecondlongestatthattime.Theseunitswerebuiltandthenconnectedbymeansofacentralsharedanchorblock,asshowninFig.2(a),whichwasanexcellentmethodatthattimeofmaintainingthebalanceintermsofmechanicswhilereducingthecosts[4].Furtherprogressinsuspensionbridgesledtothedevelopmentofamultiplemain-spansuspensionbridge,whichisasuspensionbridgewithtwosidespans,severalmainspans,andonlytwoanchorsonbothends;thereisnoadditionalanchoranywhere,Y.Ge,Y.Yuan/Engineering5(2019)15–2117Fig.2.Singleordoublemain-spansuspensionbridges.(a)Twosinglemain-spansuspensionbridges;(b)onedoublemain-spansuspensionbridge.Unit:m.asshowninFig.2(b)[9].Theothercontributionofsuspensionbridgetechnologyisthecreationofanewworldrecordinspanlength:TheboxgirdersuspensionbridgeintheGreatBeltFixedLinkis1624minlength,andisfurthercharacterizedbywind-resistancetechnologyfor?utterandVIVcontrolwithcornerde?ectors[10].2.2.Non-navigationalapproachbridgesDuetotheirlonglength,aswellasforengineeringeconomyandconstructionconvenience,non-navigationalapproachbridgesarealmostallgirder-typebridgeswithsteel,concrete,andsteel–concretecompositestructures.Sinceasea-crossingbridgeisbuiltundersevereconditionsandwithadeep-waterfoundation,itmustbedesignedwithalongspan,andbuiltonaspan-by-spanbasis.Anon-navigationalapproachbridgeusuallyrequiresashorterspanthananavigationalchannelbridge;therefore,concreteboxgirdersarethe?rstchoiceforreasonsofeconomy.The?rstthreesea-crossingcombinationbridges,whichwerebuiltbetween1936and1964,usedreinforcedconcrete(RC)andPCgirders;theirlongestspansrangedfrom23to48m.TheTrans–TokyoBayHighway,builtin1997,wasthe?rstsea-crossingcombinationbridgetousecontinuoussteelboxgirderswithspanlengthsrangingfrom80to240m[2].Aroundthesametime,theGreatBeltFixedLinkadoptedbothsteelboxgirderswithaspanof193mandPCboxgirderswithaspanof110m,sothateachgirdertypewouldhavethesameweightforthespan-by-spanhoistingconstruction[10].ThethreemostrecentBITcombinationbridgesbuiltinthe21thcenturywereallconstructedusingsteeltrussandconcreteslabcompositegirderswithspansof90to140minordertomaintainabalancebetweenmaterialstrengthandweight.Itisinterestingtoconcludethatthedevelopmentofsea-crossingapproachbridgeshastransitionedfromconcrete,tosteel,andthentosteel–concretecompositestructures.Almostallnon-navigationalapproachbridgeshavebeenbuiltusingspan-by-spantechniques,whichrequirethecreationoflarge-scaleshipsor?oatingcranesforwhole-spangirderconstruction.Thelargest?oatingcraneforbridgeconstructionistheDutch-builtHLVSwanenCrane,madein1991,whichhasaliftingcapacityof8700tandahoistingheightof76m(Fig.3(a)).ThesecondlargestistheJapanese-madeFCCrane,madein1995,whichhasaliftingforceof3000t.Inordertoconstructsea-crossingbridgesinChina,twolarge?oatingcranesweremade,includingthesmallSwanenCrane,withaliftingforceof2500t,whichwasusedfortheeastseabridgeconstructionin2003(Fig.3(b)),andtheTianyiCrane,withaliftingforceof3000t,whichwasusedfortheconstructionoftheHangzhouBayBridgein2005.Bothofthesecranes,alongwithtwomorerecentlybuiltcranes—theChangdaHaishengCrane,withaliftingforceof3200t,andtheYihangJintaiCrane,withaliftingforceofFig.3.Giant?oatingcranes.(a)TheSwanenCrane;(b)thesmallSwanenCrane.4000t—wereusedinthehoistingconstructionoftheHZMBridge(Fig.4.).2.3.DeepfoundationsAdeepfoundationisatypeoffoundationthattransferstheloadofthebridgeintotheearthfurtherbelowthesurfacethanashallowfoundation.Therearetwomaintypesofdeepfoundation:pilefoundationsandcaissonfoundations.Pilefoundationscanbemadeusingtwodifferentkindsofpiles:drivenpilesmadeofsteel,ordrilledpilescastwithRC.The?rstfourBITcombinationbridgesinTable2andtheShanghaiYangtzeRiverTunnelandBridgeuseddrivenordrilledpilefoundations.Ofthese,theSanFrancisco–OaklandBayBridgeholdstherecordforthedeepestunderwaterfoundation,at74munderwater[4],andtheChesapeakeBayBridge–Tunnelisthe?rstbridgefoundationtohavebeenappliedwithhollow,precast,andprestressedcylindricalconcretepiles[5].AcaissonfoundationisawatertightretainingstructuremadeofRCorsteel,whichissunkintothegroundtoadesireddepthandthen?lledwithconcretetoformafoundation.TheremainingthreeBITcombinationbridgesinTable2adoptedcaissonfoundations,whichwereprefabricatedonthebank,shippedfromthebanktothesite,andthensunkonsite.ThelargestRCcaissonswereusedfortheGreatBeltEastBridge,withthecaissonforthepylonfoundationbeing78mlong,35mwide,and20mdeepandhavingaweightof30000t,andthecaissonfortheanchorfoundationhavinganareaof6100m2areaandamassof50000t[10].Thelargeststeelcaissonwasusedforthepylonfoundationofthe475mspannedcable-stayedbridgeintheBusan–GeojeFixedLink;18Y.Ge,Y.Yuan/Engineering5(2019)15–21Fig.4.ApylonsteelcaissonintheBusan–GeojeFixedLink.EL:elevation.Unit:m.thiscaissonhadanareaof38m?20.5m,adepthof14m,andamassof2600t[8].3.Arti?cialislandconstructionAnisland,whethernaturalorarti?cial,canbeusedtoprovideaconnectionbetweenabridgeandatunnel,orcanconstitutethetransitionfromabridgetoatunnel.Ifnonaturalislandisavailableinareaoftheplannedproject,anarti?cialislandmustbeconstructed.Human-madeislandsorisletsvaryinsizeandfunction,andhavealonghistory.Inmoderntimes,arti?cialislandsforlandtransportationhavebeenconstructedaspierfoundationsofbridges,ventilationtowersoftunnels,andtransitpassagesbetweenabridgeandatunnel.Landcanbereclaimedfromwatertoformanarti?cialislandintwomainways:by?llinginanexist-ingisletorreef,andbyreclaiminglandfromwater.3.1.First?llinanexistingisletorreefandthenprotectthebankTheconventionalwaytoreclaimlandfromwateristolocateanisletorreefinshallowwater,andthenenlargeitusingstonesandothermaterials.Oncetherequiredlandhasbeenshaped,itisnec-essarytoconstructprotectivestructuresforthebank.Examplesofarti?cialislandsthatwereconstructedbyin?llingtheseaincludeKisarazuIslandoftheTrans-TokyoBayHighway[11]andPeber-holmofthe?resundFixedLink[12].Theseislandsactasatransi-tionfromunderseatunneltobridge.3.2.Firstreclaimthesea,andthen?llitinTheotherwayistoreclaimthewater?eldusingacofferdam.Inthepast,cofferdamswerebuiltbydumpingloosematerialsintothewaterinordertoformabankenclosingaregionofwater.Sheet-pilingisonewaytoenclosearegionofwater;thismethodisusuallyadoptedforshoalpartsofwater.Ifthelandrequiredisnotlarge,thesinkingofaprefabricatedcaissonisapossiblealter-native;thismethodwasusedfortheconstructionofKawasakiIslandoftheTrans-TokyoBayHighway[11](Fig.5).Thecaisson?rstservesasastartingshaftfortheshieldingmachines,andthenbecomesaventilationtowerduringoperation.Long-termsettlementofanarti?cialislandinsoftgroundocca-sionallyhappens.Thisisdetrimentalnotonlytothefunctionoftheprotectivestructureoftheisland,butalsototheconnectionstothebridgeandtunnel.Improvementofthesoftgroundisimpor-tant.Frequentlyusedapproachesincludereplacingthesoftsoilwithsand(i.e.,sandcompactionpilesorSCPs)orcement(i.e.,deepcementmixedpilesorDCMs).Anothermethodinvolvestheapplica-tionofapilefoundation;however,thismethodismoreexpensive.4.Sea-crossingtunnelconstructionTheSanFrancisco–OaklandBayBridgeiscomprisedofeasternandwesternbridgesconnectedviaatunnelontheYerbaBuenaIsland.Thistunnelisactuallyamountaintunnel(23mwide,18mhigh,and160mlong),andthusdiffersfromtheotherBITcombinedprojects,whichinvolvetunnelsthathavebeencon-structedunderwater.TheessenceofaBITprojectisatunnelburiedunderthesea?oor.Theconceptofanimmersedtunnelwas?rstappliedtoaBITcombinedprojectwiththeHamptonRoadsBridge–Tunnel[13].Thistunnelwastheworld’slongestimmersed-tubetunnel,atthattime,andthe?rsttobeconstructedbetweentwoarti?cialislands.The?rstsuccessfuluseofatunnel-boringmachine(TBM)inconstructionofunderseatunneloccurredinthecreationoftheChannelTunnel,betweenEnglandandFrancein1994.Afewyearsearlier,in1991,theconstructionoftheGreatBeltrailtunnelhadbeenpostponedduetotheingressionofseawater,whichdrownedtheTBMs.Thisprojectthusillustratestheimportanceofsurveyingbeforeconstruction.Inanareathatliesinanearthquakezone,seis-micactionisanothercriticalissuethatmustbeaddressed[14].4.1.ImmersedtunnelsTheimmersedtunnelsthatwereadoptedintheseBITcombina-tionprojectsdidnotdiffersigni?cantlyfromthoseadoptedelse-where.InitialprefabricationofanimmersedtunnelisusuallyperformedbyconstructingandthensinkingsteeltubesthatareY.Ge,Y.Yuan/Engineering5(2019)15–2119Fig.5.KawasakiIsland.Unit:mm.ReproducedfromRef.[11]withpermissionofIngenta,ó1993.preparedinaship-buildingdock[15].ThistechnologywasalsoadoptedbytheHamptonRoadsBridge–Tunnel.Withtheevolutionofimmersedtunneltechnology,theuseofRChasgraduallybecomemorewidespreadintheconstructionofimmersedtunnels[16].Thetubesofthetunnelsaredesignedandprefabricatedaseithermonolithicelementsorsegmentalelements,basedonthegeologicalconditionsandtheloadstobeconsideredduringcon-structionandoperation.AsshowninTable3,recentBITimmersedtunnelsthatwereconstructedasRCsegmentaltunnelsincludethe?resundFixedLink[12],theBusan–GeojeFixedLink[17],andtheHZMBridge.Immersedtunnelsthatareprefabricatedwithasteelshellusuallycomprisemonolithicelements.TheprojectsofHamptonRoadsBridge–TunnelandChesapeakeBayBridge–Tunnelweretheexamplesofmonolithicelementofimmersedtunnel.Challengesthatareoftenencounteredintheconstructionofanimmersedtunnelincludediggingatrenchtoholdthetubeelements(orsections);improvingthefoundationinsoftground;prefabricatingtheelements;shipping,sinking,andaligningtheTable3

ImmersedtunnelsofBITprojects.

HamptonRoadsBridge–TunnelConditionsFunctionLength(km)Cross-section(m)Depthtobottom(m)(belowsealevel)StrataEarthquakezoneTrenchEquipmentFoundationElement(orsection)TypeNumberLengthPrefabricatingsiteTowingshipSunkfacilitiesRoad2.06+2.06/11.1(/9.9)a33.9RiversedimentsNoDiggerGravel-bedMonolithicdouble-shellsteel231?90mShip-dock2tugsSteelframeworkstraddlingbetweentwobarges?resundFixedLinkRoadandrail3.5138.8?8.630Busan–GeojeFixedLinkRoad3.2426.46?9.9750HZMBridgeRoad6.737.95?11.444.5Softclay,sandYesDesignConstructionLimestone,glacialdepositsSoftclay,mediumsandNoNoDredgerScreedgravel-bed,withhydraulicjack-uponwharfbargeSegmentalRCrectangularbox22188?22m8?22.5mFactoryOpendrydock4tugs4tugsPontoonwithexternalpositioningsystem338?22.5mFactory12tugsa/isthediameterofacrosssectionoftheimmersedtube.Thenumberinparenthesisistheinnerdiameter,theotheroneisouterdiameter,ofthetube.

桥岛隧组合跨海通道的最新建设技术 - 图文 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0vdap2yr5u0a6ri16ozy38gut0xsx2013th_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top