可得a22n?1?a2n?(2n?1)2?2(2n?1)?2(2n?1)(2n?1)?12n?1?12n?1,
所以S12n?1?13+13?15+…+12n?1?12n?1?1?12n?1?2n2n?1, 由a?11772??1?2,递推可得a111?2?6?2?3,a3??12??11213?4,a4?20?214?5,
归纳可得(?1)n?1n(n?1).
30.若数列?a1n?满足an?1?3?2a,且对任意n?N*,有an?1?an,则a1的取值范围是________.
n【答案】a1?12 【解析】
1已知
an?1?3?2a?ann,
① 若3?2a3n?0,即an?2时, 可得an(3?2an)?1
解得a1n?2或an?1(舍去) ②若3?2a?3n?0,即an2时,
可得an(3?2an)?1
解得
12?an?1(舍去) 因此a1n?2。
又对任意n?N*,有an?1?an
?a12?3?2a?a1
1即2a21?3a1?1?0
解得a1?12或a1?1(舍去,当a1?1时,不满足an?1?an)
21
综上所述,a1?12。 31.已知数列?an?满足:a1?2,an?an?1?4n?2?n?2?. (Ⅰ)求数列?an?的通项公式;
(Ⅱ)若数列?bn?满足:b1?3b2?7b3??????2n?1?bn?an,求数列?bn?的通项公式.
【答案】(Ⅰ)an?2n;(Ⅱ)bn?22n?1 【解析】
(Ⅰ)由an?an?1?4n?2?n?2?可化为?an?2n???an?1?2n?2??0. 令cn?an?2n,则cn?cn?1?0,即cn??cn?1. 因为a1?2,所以c1?a1?2?0, 所以cn?0,
即an?2n?0,故an?2n.
(Ⅱ)由b1?3b2?7b3??????2n?1?bn?an, 可知b1?3b2?7b3?L??2n?1?1?bn?1?an?1?n?2?,
两式作差得?2n?1?bn?an?an?1?2?n?2?,
即b2n?2n?1?n?2?. 又当n?1时,也b1?a1?2满足上式, 故bn?22n?1. 32.已知数列?a123n?满足
2a5?2a??…?n?n.
1?2?52a3?52an?53(1)求数列?an?的通项公式; (2)设数列??1??a?的前n项和为T1n,证明:?T?1. nan?1?22n6【答案】(1)a3n?5n?2(2)证明见解析
22
【解析】 (1)解:
12a5?22a?3?…?n?n,①
1?2?52a3?52an?53当n?1时,a1?4. 当n?2时,
123n?2a?5?2a??…?1?n?1,②
12?52a3?52an?1?53由①-②,得a3n?5n?2?n?2?, 因为a3n?51?4符合上式,所以an?2.
(2)证明:144?11a?????? nan?1?3n?5??3n?8?3?3n?53n?8?T1n?a?1?…?1 1a2a2a3anan?1?4??11??11?1?3?????8?11?????11?14???…???1?3n?5?3n?8???? ??4?113???8??3n?8?? 因为0?13n?8?111,所以122?T1n?6. 33.已知数列?a满足,aaaa1*n?1?22?33?????nn?2n?n?1??n?N?.
(1)求a1,a2的值
(2)求数列?an?的通项公式; (3)设bn?1,数列?b3n?2n?的前n项和为Sn,求证:?n?N*a,?Sn?1. nan?14【答案】(1)a(2)a2*1?1,a2?4n?n?n?N?(3)证明见解析
【解析】
(1)由aa21?2?a33?????ann?12n?n?1??n?N*? 当n?1时,a11?2?1?1??1,即a1?1.
23
a21??2??2?1??3,解得a2?4. 22aaa1(2)∵a1?2?3?????n?n?n?1?①,
23n2aaa1∴当n?2时,a1?2?3?????n?1??n?1?n②
23n?12a112①-②n?n?n?1???n?1?n?n,∴an?n,
n22当n?2时,1?由(1)a1?1,即上式当n?1时也成立. 因此,?an?的通项公式为an?n(3)由(2)得bn?2?n?N?;
*2n?12n?111?2??, anan?1n?n?1?2n2?n?1?2?11??11??11?1???∴Sn?b1?b2?b3?????bn??1?2???2?2???2?2???????2?2 ?22334n???????n?1?????1?1?n?1?2
∵Sn?1?1?n?1?2单调递增,∴当n?1时Sn取最小值S1?3, 4∵?n?N,
*1?n?1?2?0,∴1?1?n?1?2?1,即Sn?1.
因此,
3?Sn?1. 434.棋盘上标有第0、1、2、L、100站,棋子开始位于第0站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第99站或第100站时,游戏结束.设棋子位于第n站的概率为Pn.
(1)当游戏开始时,若抛掷均匀硬币3次后,求棋手所走步数之和X的分布列与数学期望; (2)证明:Pn?1?Pn??(3)求P99、P100的值.
【答案】(1)分布列见解析,随机变量X的数学期望为
1?Pn?Pn?1??1?n?98?; 29;(2)证明见解析; 2 24
(3)P99?【解析】
2?11??3?21001?1?P?1?,100??3?299???. ?(1)由题意可知,随机变量X的可能取值有3、4、5、6.
3?1?11?1?P?X?3?????,P?X?4??C3????,
?2?8?2?833?1?3?1?1P?X?5??C????,P?X?6?????.
?2?8?2?82333所以,随机变量X的分布列如下表所示:
X P 3 1 84 3 85 3 86 1 8所以,随机变量X的数学期望为EX?3?13319?4??5??6??; 888821Pn ,也可以由第?n?1?2(2)根据题意,棋子要到第?n?1?站,由两种情况,由第n站跳1站得到,其概率为站跳2站得到,其概率为
111Pn?1,所以,Pn?1?Pn?Pn?1. 222111等式两边同时减去Pn得Pn?1?Pn??Pn?Pn?1???Pn?Pn?1??1?n?98?;
2221113?P?P?P?. (3)由(2)可得P0?1,P,1210222411?PP?P??由(2)可知,数列?P是首项为,公比为的等比数列, ?n?1n21421?1??Pn?1?Pn?????4?2?n?1?1??????2?n?1,
23991?1??1??1??P99?P?P?P?P?P?L?P?P??????L???????121329998???????2?2??2??2?981??1???1?????14?1???2???2?????1?100?, 23?2??1?1?????2?992?1?1?1?P?1?又P,则98?99?, 99?P98=?????9932??2?2? 25
相关推荐: