答:8天以后剩下的玉米是小麦的3倍。
6 倍比问题
【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】 总量÷一个数量=倍数
另一个数量×倍数=另一总量
【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现在有
油菜籽3700千克,可以榨油多少?
解 (1)3700千克是100千克的多少倍? 3700÷100=37(倍)
(2)可以榨油多少千克? 40×37=1480(千克)
列成综合算式 40×(3700÷100)=1480(千克)
答:可以榨油1480千克。
例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?
解 (1)48000名是300名的多少倍? 48000÷300=160(倍)
(2)共植树多少棵? 400×160=64000(棵)
列成综合算式 400×(48000÷300)=64000(棵)
答:全县48000名师生共植树64000棵。
例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?
解 (1)800亩是4亩的几倍? 800÷4=200(倍)
(2)800亩收入多少元? 11111×200=2222200(元)
(3)16000亩是800亩的几倍? 16000÷800
=20(倍)
(4)16000亩收入多少元? 2222200×20=44444000(元)
答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。
7 相遇问题
【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
【数量关系】 相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解 392÷(28+21)=8(小时)
答:经过8小时两船相遇。
例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
解 “第二次相遇”可以理解为二人跑了两圈。
相关推荐: