1978年美国Unimate公司和斯坦福大学,麻省理工学院联合研制一种Unimate-Vicarm型工业搬运机械手,装有小型电子计算机进行控制,用于装配作业,定位误差小于±1毫米。联邦德国机械制造业是从1970年开始应用机械手,主要用于起重运输和设备的上下料等作业。 日本是工业搬运机械手发展最快、应用最多的国家。自1969年从美国引进两种机械手后大力从事机械手的研究。前苏联自六十年代开始发展搬运机械手,至1977年底,其中一半是国产,一半是进口。 目前,工业搬运机械手大部分还属于第一代,主要依靠工人进行控制;改进的方向主要是降低成本和提高精度。第二代机械手正在加紧研制。它设有微型电子计算控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把感觉到的信息反馈,是机械手具有感觉机能。第三代搬运机械手则能独立完成工作中过程中的任务。它与电子计算机和电视设备保持联系,并逐步发展。 研究主要成果 : 在玻璃搬运机械手的研究方面日本的川崎机器人有限公司是领头军, 川崎重工自1896年创建以来,距今已有110年的历史,在工业用机器人领域,川崎重工作为日本的先锋厂家,不断开发领先时代的机器人,充分满足组装?搬运、焊接、喷涂、密封等各种需求。这些机器人不仅在日本国内、也在海外发挥作用,从日本?美国的生产基地向世界各国提供。另外,使用机器人完成的搅拌摩擦焊系统以及YAG焊接系统也实现了实用化,对于提高生产?加工的效率取得了巨大的成果。 我国在玻璃搬运机械手方面研究还比较落后,目前还没有专门的生产玻璃搬运机器人的公司,因此,我国在这方面还需深入研究,加大资金技术投入,带动我国工业快速发展。 发展趋势: 世界范围内对玻璃搬运机械手的研究还比较落后,值得研究的领域还比较深,国外机器人领域发展近几年有如下几个趋势: 1.工业玻璃搬运机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降。 2.机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。 3.工业搬运机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化; 6
器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性和可维修性。 4.机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。 5.虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。 6.当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。 7.机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。 我国的智能机器人和特种机器人在“863”计划的支持下,也取得了不少成果。其中最为突出的是水下机器人,6000米水下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、爬壁机器人、管道机器人等机种;在机器人视觉、力觉、触觉、声觉等基础技术的开发应用上开展了不少工作,有了一定的发展基础。但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发应用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立于世界先进行列之中。 20世纪80年代以来,工业把黁机器人技术逐渐成熟,并很快得到推广,目前已经在工业生产的许多领域得到应用。在工业搬运机器人逐渐得到推广和普及的过程中,下面三个方面的技术进步起着非常重要的作用。 1.驱动方式的改变 20世纪70年代后期,日本安川电动机公司研制开发出了第一台全电动的工业机器人,而此前的工业机器人基本上采用液压驱动方式。与采用液压驱动的机器人相比,采用伺服电动机驱动的机器人在响应速度、精度、灵活性等方面都有很大提高,因此,也逐步代替了采用液压驱动的机器人,成为工业机器人驱动方式的主流。在此过程中,谐波减速器、R V减速器等高 7
性能减速机构的发展也功不可没。近年来,交流伺服驱动已经逐渐代替传统的直流伺服驱动方式,直线电动机等新型驱动方式在许多应用领域也有了长足发展。 2.信息处理速度的提高 机器人的动作通常是通过机器人各个关节的驱动电动机的运动而实现的。为了使机器人完成各种复杂动作,机器人控制器需要进行大量计算,并在此基础上向机器人的各个关节的驱动电动机发出必要的控制指令。随着信息技术的不断发展,CPU的计算能力有了很大提高,机器人控制器的性能也有了很大提高,高性能机器人控制器甚至可以同时控制20多个关节。机器人控制器性能的提高也进一步促进了工业机器人本身性能的提高,并扩大了工业机器人的应用范围。近年来,随着信息技术和网络技术的发展,已经出现了多台机器人通过网络共享信息,并在此基础上进行协调控制的技术趋势。 三 总结 尽管随着现代工业的发展,搬运机器人有了飞速发展,而且取得了很大的成就,但是,随着并联机械手的应用领域不断的扩大,我们依然面临着许多问题。为此,我们对机械手领域的研究形式依然很严峻。通过我对资料的了解,我发现并联机械手仍有问题需要解决:怎样解决运行精度不高,怎么解决电池自动分选装备,实现与前序设备的信息集成怎么解决电池自动分选装备,实现与前序设备的信息集成等问题亟须解决。 不够可加附页 8
本科毕业论文(设计)开题报告书
学生姓名 题 目 选题意义、研究现状及可行性分析 一 研究意义: 学 号 机械手是工业生产的必然产物,它是一种模仿人体上肢的部分功能,按照预定要求输送工件或握持工具进行操作的自动化技术设备,对实现工业生产自动化,推动工业生产的进一步发展起着重要作用,因而具有强大的生命力受到人们的广泛重视和欢迎。本课题对搬运机械手进行了总体方案研究,确定了机械手的坐标形式和自由度,确定了机械手的技术参数。 二 机械手的现状及其国内外发展状况: 机械手是工业自动控制领域中经常遇到的一种控制对象。机械手可以完成许多工作,如搬物、装配、切割、喷染等等,应用非常广泛。 在现代工业中,生产过程中的自动化已成为突出的主题。各行各业的自动化水平越来越高,现代化加工车间,常配有机械手,以提高生产效率,完成工人难以完成的或者危险的工作。可在机械工业中,加工、装配等生产很大程度上不是连续的。据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5%。从这里可以看出,装卸、搬运等工序机械化的迫切性,工业机械手就是为实现这些工序的自动化而产生的。目前在我国机械手常用于完成的工作有:注塑工业中从模具中快速抓取制品并将制品传诵到下一个生产工序;机械手加工行业中用于取料、送料;浇铸行业中用于提取高温熔液等等。 现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化 。 机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。他的结构是:机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。 1962年,美国机械铸造公司在上述方案的基础之上又试制成一台数控示教再现型机械手。商名为Unimate(即万能自动)。运动系统仿造坦克炮塔,臂回转、俯仰,用液压驱动;控制系统用磁鼓最存储装置。不少球坐标式通用机械手就是在这个基础上发展起来的。同年该公司和 9
普鲁曼公司合并成立万能自动公司(Unimaton),专门生产工业机械手。 1962年美国机械铸造公司也试验成功一种叫Versatran机械手,原意是灵活搬运。该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用液压驱动,控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。 1978年美国Unimate公司和斯坦福大学、麻省理工学院联合研制一种Unimate-Vic-arm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±1毫米。 美国还十分注意提高机械手的可靠性,改进结构,降低成本。如Unimate公司建立了8年机械手试验台,进行各种性能的试验。准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到±0.1毫米。 德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。 日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进二种典型机械手后,大力研究机械手的研究。据报道,1979年从事机械手的研究工作的大专院校、研究单位多达50多个。1976年个大学和国家研究部门用在机械手的研究费用42%。1979年日本机械手的产值达443亿日元,产量为14535台。其中固定程序和可变程序约占一半,达222亿日元,是1978年的二倍。具有记忆功能的机械手产值约为67亿日元,比1978年增长50%。智能机械手约为17亿日元,为1978年的6倍。截止1979年,机械手累计产量达56900台。在数量上已占世界首位,约占70%,并以每年50%~60%的速度增长。使用机械手最多的是汽车工业,其次是电机、电器。预计到1990年将有55万机器人在工作。 第二代机械手正在加紧研制。它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机能。目前国外已经出现了触觉和视觉机械手。 第三代机械手(机械人)则能独立地完成工作过程中的任务。它与电子计算机和电视设备保持联系。并逐步发展成为柔性制造系统FMS(Flexible Manufacturing system)和柔性制造单元(Flexible Manufacturing Cell)中重要一环。随着工业机器手(机械人)研究制造和应用的扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多。 三 可行性: 本题要求机械手手臂能达到工作空间的任意位置,而目标物形状大小和姿态则比较单一,同时要求机械手结构简单,容易控制。综合考虑后确定该机械手具有六个自由度,其中手臂三
10
相关推荐: