三、解答题:本大题共7小题,共55分.
16.(6分)已知x?y?xy,求代数式??(1?x)(1?y)的值. 17.(6分)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF. (1)求证:BF=DF;
(2)连接CF,请直接写出BE∶CF的值(不必写出计算过程). 18.(7分)山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:
(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;
(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多
1x1y
少?
19.(8分)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.
(1)求乙工程队单独完成这项工作需要多少天?
(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?
20.(8分) 在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告. 名 四等分圆的面积 称 方 方案一 案 选用的工具 带刻度的三角板 方案二 方案三
画出示意图 作⊙O两条互相垂简述直的直径AB、CD,设计将⊙O的面积分成方案 相等的四份. 指出既是轴对称图形又对称是中心对称图形 性
21.(9分) 阅读材料:
已知,如图(1),在面积为S的△ABC中, BC=a,AC=b, AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形. ∵ S?S∴r?
(1) (2) (3) OBC ?SOAC?SOAB?1111BC?r?AC?r?AB?r?(a?b?c)r. 22222S. a?b?c
(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求1的值.
22.(11分)如图,抛物线y?x2?bx?c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y?2x于点C; (1)求该抛物线的解析式;
(2)求点A关于直线y?2x的对称点A?的坐标,判定点A?是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA?于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
rr214(第22 题)
相关推荐: