?D(1,4)
(2)
y??x2?2x?3
令y?0,?x??1,或x=3
?B(3,0)
设BC的解析式为y?kx?b将点C(0,3),B(3,0)代入,得
(k?0)
?b?3, ?3k?b?0?解得??k??1,
?b?3?y??x?3
EF?CB
2设直线EF的解析式为y?x?b,设点E的坐标为m,?m?2m?3,
??将点E坐标代入y?x?b中,得b??m2?m?3,
?y?x?m2?m?3
?y??x?3 ?2?y?x?m?m?3?m2?mx???2?? 2?y??m?m?6?2??m2?m?m2?m?6??F?,?
2?2?把x=m代入y??x?3
?G(m,?m?3)
BG?CF
?BG2?CF2
?m2?m??m2?m?22即(m?3)?(3?m)??????
?2??2?解得m=2或m=-3
∵点E是BC上方抛物线上的点 ∵m=-3舍去
∵点E(2,3),F(1,2),G(2,1)
22EF?12?12?2 FG?12?12?2
?SEFG1??2?2?1 2(3)过点A作AN∵HB, ∵点D(1,4),B(3,0)
?yDB??2x?6
∵点A(?1,0),点C(0,3)
?yAC?3x?3
?y?x?3 ?y??2x?6?3?x???5??
24?y??5??324??H?,?
?55?11x?b,把(-1,0)代入,得b=
2211?y?x?
22设yAN?11?y?x??22 ???y??2x?611?x???5??
8?y??5??118??N?,?
?55??11??8??AN???1????
?5??5?222?16??8??????? ?5??5??8??16?HN??????
?5??5?22222?AN?HN
??H?45?
设点pn,?n?2n?3
过点P作PR∵x轴于点R,在x轴上作点S使得RS=PR
2??RSP?45?且点S的坐标为?n?3n?3,0
?2???若?OPB??AHB?45? 在OPS和△OPB中,
??POS??POB ??OSP?OPB??OPS∽OPB
?OPOS? OBOP?OP2?OB?OS
?n2?(n?1)2(n?3)2?3(??n2?2n?3)
?n?0或n??P1(0,3)
1?5 2?1?55?5?P2??2,2?? ???1?55?5?P3??2,2?? ??
【点睛】本题考查的是二次函数的综合,涉及到的知识点较多,运算较复杂,第3问的解题关键在于添加适当的辅助线,利用数形结合的思想列出方程求解.
相关推荐: