第一范文网 - 专业文章范例文档资料分享平台

2017年黔东南州中考数学试卷含答案解析(word版)

来源:用户分享 时间:2025/5/25 6:50:36 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.

【解答】解:∵⊙O的直径AB垂直于弦CD, ∴CE=DE,∠CEO=90°, ∵∠A=15°, ∴∠COE=30°, ∵OC=2, ∴CE=OC=1, ∴CD=2OE=2, 故选A.

6.x2,已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,则A.2

B.﹣1 C.

D.﹣2

+

的值为( )

【考点】AB:根与系数的关系.

【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到=

,然后利用整体代入的方法计算

+

【解答】解:根据题意得x1+x2=2,x1x2=﹣1, 所以

+

=

=

=﹣2.

故选D.

7.分式方程

=1﹣

的根为( ) D.1或﹣3

A.﹣1或3 B.﹣1 C.3

【考点】B3:解分式方程.

【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

【解答】解:去分母得:3=x2+x﹣3x,

解得:x=﹣1或x=3,

经检验x=﹣1是增根,分式方程的根为x=3, 故选C

8.如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为( )

A.60° B.67.5° C.75° D.54°

【考点】LE:正方形的性质.

BF.BF.【分析】如图,连接DF、如图,连接DF、首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题. 【解答】解:如图,连接DF、BF.

∵FE⊥AB,AE=EB, ∴FA=FB, ∵AF=2AE, ∴AF=AB=FB,

∴△AFB是等边三角形, ∵AF=AD=AB,

∴点A是△DBF的外接圆的圆心,

∴∠FDB=∠FAB=30°, ∵四边形ABCD是正方形,

∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°, ∴∠FAD=∠FBC, ∴△FAD≌△FBC, ∴∠ADF=∠FCB=15°,

∴∠DOC=∠OBC+∠OCB=60°. 故选A.

9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论: ①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有( )

A.1个 B.2个 C.3个 D.4个

【考点】H4:二次函数图象与系数的关系.

【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断; ②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;

③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;

④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.

【解答】解:①∵抛物线与x轴有2个交点, ∴△=b2﹣4ac>0, 所以①错误;

②∵抛物线开口向上, ∴a>0,

∵抛物线的对称轴在y轴的右侧, ∴a、b同号, ∴b>0,

∵抛物线与y轴交点在x轴上方, ∴c>0, ∴abc>0, 所以②正确;

③∵x=﹣1时,y<0, 即a﹣b+c<0,

∵对称轴为直线x=﹣1, ∴﹣

=﹣1,

∴b=2a,

∴a﹣2a+c<0,即a>c, 所以③正确;

④∵抛物线的对称轴为直线x=﹣1,

∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0, ∴4a﹣2b+c>0, 所以④正确.

所以本题正确的有:②③④,三个, 故选C.

10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)

n

的展开式的各项系数,此三角形称为“杨辉三角”.

2017年黔东南州中考数学试卷含答案解析(word版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0z5we0ty3m37lyd0yjbf83hrt8bf1m008tw_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top