初 中 数 学 几 个 数 学 模 型
模型1、l:r=360:n ①圆锥母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是 216 。 ②劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心角等于( C ) A.45° B.60° C.90° D.120°
00
③要制作一个圆锥形的模型,要求底面半径为2cm,母线长为4cm,在一个边长为8cm的正方形纸板上,能否裁剪制作一个这种模型(侧面和底面要完整,不能拼凑)( C ) (A)一个也不能做 (B)能做一个 (C)可做二个 (D)可做二个以上 4、(2004河北T7)在正方形铁皮上剪下个圆形和扇形,使之恰好围成如图所示的圆锥模型.设圆的半径为r,扇形的半径为R,则圆半径与扇形半径之间的关系是 (D )A、2r=R B、D、 模型2、角平分线+平行=等腰三角形 如图,
ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,
C、
交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系( B ).
(A)EF>BE+CF (B)EF=BE+CF (C)EF 0 0 ,∠A=30,则∠B=___60___度。 0 ②两个全等的含30, 60角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连结BD,取BD的中点M,连结ME,MC.试判断△EMC的形状,并说明理由.(等腰直角三角形) ③(2006邵阳T8. ) 将一副三角板按图(一)叠放,则△AOB与△DOC的面积之比等于(1:3 ) ④(2005年浙江绍兴T18.)(以下两小题选做一题,第(1)小题满分5分,第(2)小题满分为3分。若两小题都做,以第(1)小题计分) 选做第________小题,答案为________ (1) 将一副三角板如图叠放,则左右阴影部分面积(2) 将一副三角板如图放置,则上下两块三角板面积 :: 之比等于________ 之比等于________ ⑤(2006年武汉市T24.10分)已知:将一副三角板(Rt△ABC和Rt△DEF)如图①摆放, 点E、A、D、B在一条直线上,且D是AB的中点。将Rt△DEF绕点D顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE、AC相交于点M,直线DF、BC相交于点N,分别过点M、N作直线AB的垂线,垂足为G、H。 (1)当α=30°时(如图②),求证:AG=DH; (2)当α=60°时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由。 F F 45° C C (N) E M 60° E A D B A G D H B 图① 图② 第24题图 E C C E F F N M M N A G D H B A G D H B 图④ 图③ 第24题图 0 ⑥一副三角板由一个等腰直角三角形和一个含30的直角三角形组成,利用这副三角板构成 0 一个含有15角的方法较多,请你画出其中两种不同构成的示意图,并在图上标出必要的标注,不写作法. ⑦将一副三角尺如图摆放一起,连接AD, 则∠ADB的余切值为 . ⑧如图, 中, , , ,过点 作 于 , 过作于,过作于,这样继续作下去,……,线段 能等于(为正整数) (A) (B) (C) (D) ⑨已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题: (第⑧题图) (1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.. ①在图甲中,证明:PC=PD; ②在图乙中,点G是CD与OP的交点,且PG=PD,求△POD与△PDG的面积之比. (2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长. A A A M M M P P C C O D B O O B D B 图甲 图乙 图丙 ⑩如图,客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮。两船同时起航,并同时到达折线A-B-C的某点E处,已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍。 (1)选择:两船相遇之处E点( )。 A、在线段AB上 B、在线段BC上 C、可以在线段AB上,也可以在线段BC上 (2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)。 ⒒将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC 上滑动, 直角的另一边始终经过点B,另一边与射线DC相交于点Q。设A、P两点间的距离为x, (1)当点Q在CD上时,线段PQ、PB之间有怎样的大小关系?试证明你观察到的结论。 (2)当点Q在CD上时,求四边形PBCQ的面积y与x的函数解析式,并求出X的取值范围; (3)当点P在线段AC上滑动时,三角形PCQ是否能为等腰三角形?如果可能,指出所有可能使三角形PCQ成为等腰三角形的点Q的位置,并求出相应的X的值;如果不能说明理由(以下三个图的形状,大小相同,以供操与解题时备用) 解:(1)PQ=PB 证明:连接BD交AC于点O,连接PD,如图(1) 四边形ABCD是正方形 AC垂直平分BD, PB=PD, 图 (1) ……………………………..4分 (2)连接BD交AC于点O,作QE 于点E(如图2) ………………………………………………4分 (3)可能 当P与A重合时,Q与D重合,有PQ=QC,X=0 当PC=CQ时,且Q在DC的延长线上时,(图形3),连接BD交AC于点O,连接BQ,则CQ=PC= 由(1)证得,PB=PQ, 由 …………….3分 12.如图,操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与边DC或射线DC相交于点Q。 当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论; ② 当点Q在边CD运动上时,设四边形PBCQ的面积为S时,试用含有x的代数式表示S: ③ 当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由。 ①过点P作 交AB于E, 过点P作 交BC于F -----1分 PE=AE,BE=1-AE,PF=1-PE=1-AE ∴BE=PF ------2分 ∴ ∴ ------3分 ------4分 ∴PB=PQ --------5分 设PM=x,BM=1-x, QC=1-x-x=1-2x -----------8分 ③有可能成为等腰三角形,求出x值-------11分 13.(12分)用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转. (1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图13—1),通过观察或测量BE,CF的长度,你能得出什么结论?并证明你的结论; (2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图13—2),
相关推荐: