第一范文网 - 专业文章范例文档资料分享平台

职高数学各章节知识点汇总

来源:用户分享 时间:2025/5/31 12:27:20 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2、象限角:a为第一象限角,2k???? a为第二象限角,

?2?2k?,k?Z

?2?2k??????2k?,k?Z

3??2k?,k?Z 2y?0 a为第三象限角,??2k???? a为第四象限角,

3??2k????2??2k?,k?Z 2 3、任意角三角函数定义:已知角a终边上任意一点P的坐标(x,y),(r=x2?y2)

则sina?yxy,cosa?,tana? rrx00 0 4.特殊角的三角函数值表 角a 弧度 300 450 600 900 1800 2700 3600 ? 61 23 23 3? 42 22 21 ? 33 2? 21 ? 0 3? 2-1 2? 0 sina 0 cosa 1 1 23 0 -1 0 1 tana 0 不存在 0 不存在 0

二、同角的三角函数关系式

平方关系式:sina?cosa?1 商数关系式:tana?三、诱导公式:

22sina cosasin(a?k?)?sina(k为偶数) sin(a?k?)?-sina(k为奇数) cos(a?k?)?cosa(k为偶数) cos(a?k?)?-cosa(k为奇数) tan(a?k?)?tana(k为整数)

四、两角和与差的三角函数

sin(a??)?sinacos??cosasin? cos(a??)?cosacos??sinasin? tan(a??)?tana?tan?

1?tana?tan?五、二倍角公式

sin2a?2sinacosa

cos2a?cos2a?sin2a?2cos2a?1?1?2sin2a

2tana 21?tana?abc六、正弦定理: ??sinAsinBsinCtan2a?应用范围:(1)已知两角与一边(2)已知两边及其中一边的对角(两解,一解或无解) 七、余弦定理:

a2?b2?c2?2bccosA,b2?a2?c2?2bccosB,c2?a2?b2?2bccosC

应用范围:(1)已知三边(2)已知两边及其夹角

八、三角形面积公式

S=

111absinC=bcsinA=acsinB 222

九、三角函数性质: 函数 定义域 值域 周期 奇偶性 y=sinx R 【-1,1】 y=cosx R 【-1,1】 y=tanx (??2?k?,?2?k?) 2? 奇函数 2? 偶函数 R ? 奇函数 [?单调性 ?2?2k?,?2?2k?],增函数[???2k?,2k?],增函数[2k?,??2k?],减函数(? ?2?k?,?2?k?) 3?[?2k?,?2k?],减函数22当x??上是增函数 最值 当x?2k?时取最大值1 当x???2k?时取最小值-?当x???2k?时取最小值-1 1 ?2?2k?时取最大值1 无最值 2图像 第六章 等差数列等比数列

名称 定义 等差数列 等比数列 an?1?an?d(从第二项起) an=a1+(n-1)d an?1?q(q?0) anan=a1qn?1通项公式 (q≠0) 前n项和公式 Sn=n(a1?an)n(n?1)=a1n+d 22 a1(1?qn)当q≠1时,Sn= 1?q当q=1时,Sn=na1 如果a,A,b三个数成等差数列 中项 等差中项公式A=如果a,G,b三个数成等比数列 等比中项公式:G=ab 2a?b 2定义法:an?1-an=d(常数) 判定 中项法:an?1+an?1=2 an(n≥2) 若m+n=p+q,则am+an=ap+aq 性质 定义法:an?1 =q(常数) an中项法:an?1an?1= a2n (n≥2) 若m+n=p+q,则aman=apaq d?sn与sn?1的关系 an?am n?m?S1(n?1) an??S?S(n?2)n?1?nx?d,a,a?d a,a,aq(q?0) q三个数的设法 第七章 平面向量

(一)有关概念

向量:既有大小又有方向的量 向量的大小:有向线段的长度。 向量的方向:有向线段的方向。 大小和方向是确定向量的两个要素。

零向量:长度为0的向量叫做零向量,零向量没有确定的方向,记作0。 (二)向量的加法,减法 (三)向量的运算律

⑴加法运算律 ①a+b=b+a

②(a+b)+c=a+(b+c) ③a+0=0+a=a

④a+(-a)=(-a)+a=0

(四)向量的内积

已知两个非零向量a和b,它们的夹角为?,我们把ab cos?叫做a和b的内积,记作a·b 即 ① a·b=ab cos?

注意:内积是一个实数,不在是一个向量。 规定:零向量与任一向量的数量积是a·0 =0 a=(a1,,a,2) b=(b1,b2)

⑵数乘运算律

①?(?a=(??)a )②?(a?b)=?a+?b (???)a=?a+?a ③(-1)a=-a

② a·b=a1b1+a2b2 (五)向量内积的运算律

① a·b=b·a

②(?a)·b=?(a·b)=a·(?b) ③(a+b)·c= a·c + b·c

(六)向量内积的应用a=(a1,,a,2) b=(b1,b2)

?① 向量的模:|a|??2?? |a |?a12?a2a?a??a1b1?a2b2a?b cos??②a 与b的夹角:

cos????2222a1?a2?b1?b2|a||b|(七)平面向量的坐标运算

设 a=(a1,,a,2) b=(b1,b2) 则 ① a+b=(a1+b1,a2+b2) ② a-b=(a1-b1,a2-b2) ③?a=(? a1,? a2) ④a·b=a1b1+a2b2 (八) 两向量垂直,平行的条件

设 a=(a1,, a2) b=(b1,b2) 则 ⑴向量平行的条件:a∥b?a=?b

a∥b? a1,b2- a2b1=0 ⑵向量垂直的条件:a?b?a·b=0 a?b? a1,b1+ a2b2=0

解析几何

直线

一、直线与直线方程

1、直线的倾斜角、斜率和截距

(1)直线的倾斜角:一条直线向上的方向与x轴正向所成的最小正角,叫这条直线的倾斜角。 (2)、倾斜角的范围:0???180 2、直线斜率 k?tan????y2?y1A???(其中??,x2?x1,B?0)

x2?x1B2? 注:任何直线都有倾斜角,但不一定有斜率,当倾斜角为90时,斜率不存在。 3、直线的截距

在x轴上的截距,令y?0求x 在y轴上的截距,令x?0求y

注:截距不是距离,是坐标,可正可负可为零。 4、直线的方向向量和法向量

(1)方向向量:平行于直线的向量,一个方向向量为a?(1,k)或a?(B,?A) (2)法向量:垂直于直线的向量,一个法向量为n?(A,B) 二、直线方程的几种形式 名称 斜截式 点斜式 一般式 已知条件 直线方程 说明 ???k和在y轴上的截距b P(x0,y0)和k y?kx?b y?y0?k(x?x0) k存在,不包括y轴和平行于y轴的直线 k存在,不包括y轴和平行于y轴的直线 A,B不能同时为0 A,B,C的值 Ax?By?C?0 几种特殊的直线: (1)x轴:y?0 (2)Y轴:x?0

(3)平行于X轴的直线:y?b(b?0) (4)平行于Y轴的直线:x?a(a?0)

(5)过原点的直线;y?kx(不包括Y轴和平行于Y轴的直线) 三、两条直线的位置关系

斜截式 位置关系 一般式 l1:y?k1x?b1l2:y?k2x?b2 l1:A1x?B1y?C1?0l2:A2x?B2y?C2?0A1B1C1?? A2B2C2A1B1C1?? A2B2C2A1B1? A2B2 平行 k1?k2,b1?b2 重合 k1?k2,b1?b2 相交 k1?k2 垂直 k1k2??1 A1A2?B1B2?0 与直线Ax?By?C?0平行的直线方程可设为:Ax?By?m?0(C?m) 与直线Ax?By?C?0垂直的直线方程可设为:Bx?Ay?m?0 四、点到直线的距离公式:

1、点(x0,y0)到直线Ax?By?C?0的距离d?|Ax0?By0?C|A?B22

搜索更多关于: 职高数学各章节知识点汇总 的文档
职高数学各章节知识点汇总.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0zog520qtv4n25q6ny0j2r4yi9c8on003u8_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top