【点评】此题是四边形综合题,主要考查了等边三角形,等腰直角三角形的性质,全等三角形的性质和判定的综合应用,解本题的关键是判定三角形全等,根据全等三角形的对应边相等进行推导.本题也可以运用相似三角形的性质进行求解.
23.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;
(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求②由题意可知点A处不可能是直角,得△ACD和△FCD的面积,则可求得四边形ACFD的面积;则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标. 【解答】解: (1)由题意可得
2
2
,解得,
∴抛物线解析式为y=﹣x+2x+3; (2)①∵y=﹣x+2x+3=﹣(x﹣1)+4, ∴F(1,4),
∵C(0,3),D(2,3), ∴CD=2,且CD∥x轴, ∵A(﹣1,0),
∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;
2
2
②∵点P在线段AB上, ∴∠DAQ不可能为直角,
∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°, i.当∠ADQ=90°时,则DQ⊥AD, ∵A(﹣1,0),D(2,3), ∴直线AD解析式为y=x+1,
∴可设直线DQ解析式为y=﹣x+b′, 把D(2,3)代入可求得b′=5, ∴直线DQ解析式为y=﹣x+5, 联立直线DQ和抛物线解析式可得∴Q(1,4);
ii.当∠AQD=90°时,设Q(t,﹣t+2t+3), 设直线AQ的解析式为y=k1x+b1, 把A、Q坐标代入可得
,解得k1=﹣(t﹣3),
2
,解得或,
设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t, ∵AQ⊥DQ,
∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=当t=当t=
时,﹣t+2t+3=时,﹣t+2t+3=
,
22
,
, , )或(
,
,
); )或(
,
).
∴Q点坐标为(
综上可知Q点坐标为(1,4)或(
【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.
相关推荐: