第一范文网 - 专业文章范例文档资料分享平台

高中数学古典概率教案新人教版必修3

来源:用户分享 时间:2025/5/30 21:58:36 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

n=4,m=1,P=

1. 42.一次投掷两颗骰子,求出现的点数之和为奇数的概率.

解法一:设表示“出现点数之和为奇数”,用(i,j)记“第一颗骰子出现i点,

第二颗骰子出现j点”,i,j=1,2,…6.显然出现的36个基本事件组成等概样本空间,其中A包含的基本事件个数为k=3×3+3×3=18,故P(A)=

1. 21. 2解法二:若把一次试验的所有可能结果取为:(奇,奇),(奇,偶),(偶,奇),(偶,偶),则它们也组成等概率样本空间.基本事件总数n=4,A包含的基本事件个数k=2,故P(A)=

解法三:若把一次试验的所有可能结果取为:{点数和为奇数},{点数和为偶数},也组成等概率样本空间,基本事件总数n=2,A所含基本事件数为1,故P(A)=

1. 2注:找出的基本事件组构成的样本空间,必须是等概率的.解法2中倘若解为:(两个奇),(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P(A)==

1,错的原因就是它不是等概率的.例如P(两个奇)311,而P(一奇一偶)=.本例又告诉我们,同一问题可取不同的样本空间解答. 42例3 同时掷两个骰子,计算: (1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种? (3)向上的点数之和是5的概率是多少?

解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.

(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.

(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得P(A)=

41?. 369例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?

解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码构成.所以P(“试一次密码就能取到

1.

100001发生概率为的事件是小概率事件,通常我们认为这样的事件在一次试验中是几乎不可能发生的,也

10000钱”)=

就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果

第4次键入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.

人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.

例5 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?

听中有1听不合格,就表示查出了不合格产品.

依次不放回地从箱中取出2听饮料,得到的两个标记分别记为x和y,则(x,y)表示一次抽取的结果,即基本事件.由于是随机抽取,所以抽取到任何基本事件的概率相等.用A表示“抽出的2听饮料中有不合格产品”,A1表示“仅第一次抽出的是不合格产品”,A2表示“仅第二次抽出的是不合格产品”,A12表示“两次抽出的都是不合格产品”,则A1,A2和A12是互不相容的事件,且A=A1∪A2∪A12,从而P(A)=P(A1)+P(A2)+P(A12).

因为A1中的基本事件的个数为8,A2中的基本事件的个数为8,A12中的基本事件的个数为2,全部基本事件的总数为30,所以P(A)=

882??=0.6. 303030思路2

例1 一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球, (1)共有多少个基本事件?

(2)摸出的两个都是白球的概率是多少?

活动:可用枚举法找出所有的等可能基本事件. 解:(1)分别记白球为1,2,3号,黑球4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5). 因此,共有10个基本事件.

(2)上述10个基本事件发生的可能性是相同的,且只有3个基本事件是摸到两个白球(记为事件A),即(1,2),(1,3),(2,3),故P(A)=

3. 103. 10∴共有10个基本事件,摸到两个白球的概率为

变式训练

将一颗骰子先后抛掷两次,观察向上的点数,问: (1)共有多少种不同的结果?

(2)两数的和是3的倍数的结果有多少种? (3)两数和是3的倍数的概率是多少?

先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果;

点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果;

(3)记“向上点数和为3的倍数”为事件A,则事件A的结果有12种,因为抛两次得到的36种结果是等可能出现的,所以所求的概率为P(A)=

121=. 363答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有12种;点数的和是3的倍数的概率为

1. 3

说明:也可以利用图表来数基本事件的个数:

例2 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.

活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.

解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)], 事件A由4个基本事件组成,因而,P(A)=

42=. 63 思考

在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.

有放回地连续取出两件,其一切可能的结果有:(a1,a1),(a1,a2),(a1,b1),(a2,a1),(a2,a2),(a2,b1),(b1,a2),(b1,b1),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)], 事件B包含4个基本事件,因而,P(B)=

4. 9点评:(1)在连续两次取出过程中,(a1,b1)与(b1,a1)不是同一个基本事件,因为先后顺序不同. (2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的. 变式训练

现有一批产品共有10件,其中8件为正品,2件为次品:

(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率; (2)如果从中一次取3件,求3件都是正品的概率.

分析:(1)为放回抽样;(2)为不放回抽样. 解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果

33

有10×10×10=10种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=8种,因

83此,P(A)=3=0.512.

10(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件都是正品”,则事件B包含的基本事件总数为8×7×6=336,所以P(B)=

336≈0.467. 720解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x)是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此

P(B)=

56≈0.467. 120点评:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误. (四)知能训练

本节练习1、2、3. (五)拓展提升

一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.

2

解:在1 000个小正方体中,一面涂有色彩的有8×6个,两面涂有色彩的有8×12个,三面涂有色彩的有8个,∴(1)有一面涂有色彩的概率为P1=(2)有两面涂有色彩的概率为P2=

384=0.384; 100096=0.096; 10008(3)有三面涂有色彩的概率为P3==0.008.

1000答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008. (六)课堂小结 1.古典概型 我们将具有

(1)试验中所有可能出现的基本事件只有有限个;(有限性) (2)每个基本事件出现的可能性相等.(等可能性)

这样两个特点的概率模型称为古典概率概型,简称古典概型. 2.古典概型计算任何事件的概率计算公式 P(A)=

A所包含的基本事件的个数.

基本事件的总数3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏. (七)作业

习题3.2 A组1、2、3、4.

§3.2.2 (整数值)随机数(random numbers)的产生

一、教材分析

产生随机数的方法有两种:

(1)由试验产生的随机数:例如我们要产生1—25之间的随机整数,我们把25个大小形状等均相同的小机数.一般当需要的随机数个数不是太多时,可以用这种方法产生随机数.如果需要随机数的量很大,这种方法就不是很方便,因为速度太慢.

(2)用计算器或计算机产生随机数:由于计算机或计算器产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,称为伪随机数.在随机模拟中,往往需要大量的随机数,这时会选择用计算机产生随机数.

这部分内容是新增加的内容,是随机模拟中最简单、易操作的部分,所以要求每个学生会操作.具体教学时,教师可以在课堂上带着学生用计算器操作一遍,然后让学生模拟掷硬币的试验或掷骰子的试验,并统计试验的结果.

根据试验结果,教师可以设计一些与上一章统计部分相联系的问题,通过知识的相互联系,可以帮助学

高中数学古典概率教案新人教版必修3.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c10gd65g6fp47le14lopx1jxus0hkxz00vwl_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top