1.求在8点几分时,时针与分针重合在一起?
2.如图中数字排列:
问:第20行第7个是多少?
3.某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?
4.兄弟三人分24个苹果,每人所得个数等于其三年前的年龄数.如果老三把所得苹果数的一半平分给老大和老二,然后老二再把现有苹果数的一半平分给老大和老三,最后老大再把现有苹果数的一半平分给老二和老三,这时每人苹果数恰好相等,求现在兄弟三人的年龄各是多少岁?
以下答案为网友提供,仅供参考:
一、填空题:
1.(B)
取倒数进行比较.
2.(16)
把各数因数分解.33=11×3;51=17×3;65=13×5;77=11×7;85=17×5;91=13×7,所以33×85×91=77×51×65故差为91+85+33-77-65-51=16.
5.(421)
由A+B+C=7,A、B、C都是自然数,且A>B>C,所以A=4,B=2,C=1.即三位数
17
为421.
6.(400)
7.(72)
没打洞前正方体表面积共6×3×3=54,打洞后面积减少6又增加6×4(洞的表面积),即所得形体的表面积是54-6+24=72.
8.(9块)45%
9.(3994)
10.27角6分
不妨设甲家用电x度,乙家用电y度,因为96既不是20的倍数,也不是9的倍数.所以必然甲家用电大于24度,乙家小于24度.即x>24≥y.由条件得.24×9+20(x-24)=9y+96,20x-9y=360,由9y=20x-360,20|9y,又(9,20)=1,所以|20y.当0≤y≤24时,y=20或0.而y=0即x=18<24,矛盾,故y=20,x=27.甲应交24×9+20×(27-24)=276(分)=27.6(角).
二、解答题:
考虑8点时,分针落后时针40个格(每分为一格),而时针速度为每分
2.(368)
由分析知第n行有2n-1个数,所以前19行共有1+3+5+…+(2×19-1) 3.(1344)
设洗衣机x元,则每月应得报酬为:
4.(16,10,7)
列表用逆推法求原来兄弟三人的苹果数:
18
所以老大年龄为13+3=16(岁),老二年龄为7+3=10(岁),老三年龄为4+3=7(岁).
(六)
一、填空题:
2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.
3.比较下面两个积的大小:
A=9.5876×1.23456,B=9.5875×1.23457,则A______B.
第______个分数.
5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.
6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.
7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.
8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.
9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.
10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.
二、解答题:
19
1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.
2.分母是964的最简真分数共有多少个?
3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.
4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?
以下答案为网友提供,仅供参考: 一、填空题:
2.1.8
由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元
得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元 (56- 18)支圆珠笔=83.3-33.9 1支圆珠笔= 1.3元
所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.
3.>
A=9.5875×1.23456+0.0001×1.23456 B=9.5875×1.23456+9.5875×0.00001
20
相关推荐: