第一范文网 - 专业文章范例文档资料分享平台

(优辅资源)河北省衡水高三下学期二调数学试卷(理科) Word版含解析

来源:用户分享 时间:2025/9/30 16:27:45 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

优质文档

【考点】与圆有关的比例线段. 【分析】(1)由已知得∠BAC=∠CBA,从而AC=BC=5,由此利用切割线定理能证明QC?BC=QC2﹣QA2.

(2)由已知求出QC=9,由弦切角定理得∠QAB=∠ACQ,从而△QAB∽△QCA,由此能求出AB的长. 【解答】(本小题满分10分)选修4﹣1:几何证明选讲 1 证明:(1)∵PQ与⊙O相切于点A,∴∠PAC=∠CBA, ∵∠PAC=∠BAC,∴∠BAC=∠CBA, ∴AC=BC=5, 由切割线定理得:

QA2=QB?QC=(QC﹣BC)?QC, ∴QC?BC=QC2﹣QA2.

(2)由AC=BC=5,AQ=6 及(1),知QC=9, ∵直线PQ与⊙O相切于点A,AB是⊙O的弦, ∴∠QAB=∠ACQ,又∠Q=∠Q, ∴△QAB∽△QCA, ∴

=

,∴AB=

[选修4-4:坐标系与参数方程]

23.在平面直角坐标系x Oy中,直线l的参数方程为(t为参数).在以原点

O为极点,x轴正半轴为极轴的极坐标中,圆C的方程为.

(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程; (Ⅱ)若点 P坐标为,圆C与直线l交于 A,B两点,求|PA|+|PB|的值. 【考点】直线的参数方程;简单曲线的极坐标方程. 【分析】(Ⅰ)先利用两方程相加,消去参数t即可得到l的普通方程,再利用直角坐标与

ρsinθ=y,ρ2=x2+y2,进行代换即得圆C的直角坐标方程.极坐标间的关系,即利用ρcosθ=x,

(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,利用参数的几何意义,求|PA|+|PB|的值.

【解答】解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0﹣﹣﹣﹣﹣﹣﹣

﹣2分 又由

﹣﹣﹣﹣5分

t)2+(

得 ρ2=2

ρsinθ,化为直角坐标方程为x2+(y﹣

)2=5;﹣﹣﹣﹣﹣

(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程, 得(3﹣

t)2=5,即t2﹣3

t+4=0

设t1,t2是上述方程的两实数根, 所以t1+t2=3

优质文档

优质文档

又直线l过点P,A、B两点对应的参数分别为t1,t2,

所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣10分.

[选修4-5:不等式选讲] 24.(1)已知函数f(x)=|x﹣1|+|x+3|,求x的取值范围,使f(x)为常函数; (2)若x,y,z∈R,x2+y2+z2=1,求m=x+y+z的最大值. 【考点】柯西不等式的几何意义;函数的最值及其几何意义.

【分析】(1)去绝对值号可得f(x)=|x﹣1|+|x+3|=,从而确定使f

(x)为常函数时x的取值范围; (2)由柯西不等式可得(x2+y2+z2)(

+

+

)≥(

x+

y+

z)2;从而解得.

【解答】解:(1)f(x)=|x﹣1|+|x+3|=,

故当x∈[﹣3,1]时,f(x)为常数函数; (2)由柯西不等式可得, (x2+y2+z2)(

+

+

)≥(

x+

y+

z)2;

即(x+y+z)2≤9; 故x+y+z≤3;

故m=x+y+z的最大值为3. 2016年10月18日

优质文档

(优辅资源)河北省衡水高三下学期二调数学试卷(理科) Word版含解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1294o0kpz58xzko02xoc4ddq3430jm00y7j_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top