第一范文网 - 专业文章范例文档资料分享平台

通信原理樊昌信答案

来源:用户分享 时间:2025/8/28 8:11:59 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

《通信原理》习题第一章

wR(?)?1???Sa2()2 解:见第2. 4 题

因为

?T(t)??n????(t?2n)? 所以

?(t)?R(?)*?T(t)

据付氏变换的性质可得

?P?(w)?PR(w)F?(w)?而

?T(t)??n????(t?2n)???n????(w?n?)??2w2w?n?P(w)?P(w)F(w)?Sa()*??(w?n?)?Sa()*??n????n????(w?n?)?R?22故

习题2.24将一个均值为 0,功率谱密度为为频率为

wcn0/2的高斯白噪声加到一个中心角

、带宽为B的理想带通滤波器上,如图

(1) 求滤波器输出噪声的自相关函数; (2) 写出输出噪声的一维概率密度函数。 解: (1)

Po(w)?H(w)Pi(w)?2n0H(w)2

?因为w0又

G2w0(w)?Sa(w0?),故

G2B?(w)?BSa(B??)

H(w)?G2B?(w)*[?(w?wc)??(w?wc)]

?(w?wc)??(w?wc)?1?cos(wc?)

12?1由 付氏变换的性质 可得

f1(t)f?)2(tF(w)*2F(w)

n0nH(w)?0G2B?(w)*[?(w?wc)??(w?wc)22?R(?)?n0BSa(B??)cos(wc?)Po(w)?

13

《通信原理》习题第一章

(2)

E[?o(t)]?0;

R(0)?E[?02(t)]?Bn0;

R(?)?E2[?o(t)]?0

所以

?2?R(0)?R(?)?Bn0

又因为输出噪声分布为高斯分布

可得输出噪声分布函数为

1t2f[?0(t)]?exp(?)2Bn2?Bn00

n0/2习题2.25设有RC低通滤波器,求当输入均值为 0,功率谱密度为时,输出过程的功率谱密度和自相关函数。

解:

11jwCH(w)??1jwRC?1R?jwC

的白噪声

(1)

PO(w)?Pi(w)H(w)?2n01*21?(wRC)2

(2) 因为

exp(?a?)?po(w)?2aw2?a2

所以

?n0n01*?R(?)?exp(?)O22(wRC)?14RCRC

n0/2习题2.26将均值为0,功率谱密度为

(2) 求输出噪声的方差。

RR?jwL

2高斯白噪声加到低通滤波器的输入端,

(1) 求输出噪声的自相关函数;

解:

H(w)?

R?n0n0R2Po(w)?Pi(w)H(w)?*2?R(?)?exp(?)O22R?(wL)4LL (1)

(2)

E[n0(t)]?0;

n0R4L

Tb?2?R(0)?R(?)?R(0)?习题2.27设有一个随机二进制矩形脉冲波形,它的每个脉冲的持续时为幅度取?1的概率相等。现假设任一间隔

,脉冲

Tb内波形取值与任何别的间隔内取值统计无

14

《通信原理》习题第一章

关,且过程具有宽平稳性,试证:

??0,??TbR?(t)????1??/Tb,??Tb2P?(w)?Tb[Sa(?fTb)](1) 自相关函数(2) 功率谱密度

解: (1)

R?(?)?E[?(t)?(t??)]

R?(?)①当②当

??Tb??Tb时,?(t)与?(t??)无关,故

=0

2Tb时,因脉冲幅度取?1的概率相等,所以在

内,该波形取-1

1-1、1 1、-1 1、1 -1 的概率均为4。

(A) 波形取-1-1、11 时,

1R(?)?E[?(t)?(t??)]?*1?1/4?Tb4在图示的一个间隔内,

(B) 波形取-1 1、1 -1 时,

1T???R?(?)?E[?(t)?(t??)]?*(b?)Tb4TTb b在图示的一个间隔内,

?11Tb???R?(?)?E[?(t)?(t??)]?2*?2*(?)?1???Tb44TTbTb b当时,

15

《通信原理》习题第一章

(2)

??0,??TbR?(t)????1??/Tb,??Tb

面积。所以

R?(?)?p?(w)?TbSa2(wTb)2。

?A?2w?A?Sa()24,其中2为时域波形的

习题2.28有单个输入、两个输出的线形过滤器,若输入过程,?(t)是平稳的,求

?1(t)与?2(t)的互功率谱密度的表示式。

(提示:互功率谱密度与互相关函数为付利叶变换对)

解:

???1(t)???(t??)h1(?)d?00

R12(t1,t1??)?E[?1(t1)?2(t1??)]??2(t)???(t??)h2(?)d?

??E[??(t1??)h1(?)d???(t1????)h2(?)d?]00?????h1(?)h2(?)R?(?????)d?d?00

????所以

P12(w)????R12(?)e?jw?d?????d????jw?d?[h(?)h(?)R(?????)ed???12???'?令??????

??jw???jw?P12(w)??h(?)e0d??h(?)e0d??[R?(?')e?jw?d?'?H1*(w)H2(w)P?(w)??'

习题2.29若?(t)是平稳随机过程,自相关函数为相关函数及功率谱密度。

解:

R?(?),试求它通过系统后的自

16

搜索更多关于: 通信原理樊昌信答案 的文档
通信原理樊昌信答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c13hyv8ng8j9pugm7q9sz_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top