第一范文网 - 专业文章范例文档资料分享平台

BP神经网络模型应用实例

来源:用户分享 时间:2025/6/12 4:57:48 本文由闂佽В鍋撻悘鐐垫櫕濮e牓鏌ら悮瀛樺 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

BP神经网络模型 第1节 基本原理简介

近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.

目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络

设想,如图34-1所示。

输入层 中间层 输出层

图34-1 BP神经网络模型 BP算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S型函数,如

式中Q为调整激励函数形式的Sigmoid参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。每一层神经元的状态只影响下一层神经

f(x)?11?e?x/Q元的状态。如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。 社含有n个节点的任意网络,各节点之特性为Sigmoid型。为简便起见,指定网络只有一个输出y,任一节点i的输出为Oi,并设有N个样本(xk,yk)(k=1,2,3,…,N),对某一输入xk,网络输出为yk节点i的输出为Oik,节点j的输入为netjk=

1N?E??(yk?yk)2并将误差函数定义为2k?1?WOijiik

?jk??Ek?netjk?y其中k为网络实际输出,定义

Ek=(yk-?k)2, ,且

Ojk=f(netjk),于是

?Ek?Ek?netjk?Ek??Oik?Wij?netjk?Wij?netjk=δ

jkOik

当j为输出节点时,Ojk=?k

?jk??Ek?yk?????(yk?yk)f?(netjk)?yk?netjk

(34.1)

若j不是输出节点,则有

?Ek?Ek?Ojk?Ek??f?(netjk)?netjk?Ojk?netjk?Ojk?Ek?Ek?netmk???Ojkm?netmk?Ojk?Ek???WmiOik?m?netmk?Ojki?Ek??Wmj???mkWmj??netmmmki

?jk? 因此

搜索更多关于: BP神经网络模型应用实例 的文档
BP神经网络模型应用实例.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c13ymn0tp8s55t2h95x553fre38hic90118s_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top