第三章 经典单方程计量经济学模型:多元线性回归模型
3—1 解释下列概念 (1)多元线性回归模型
解答:在现实经济活动中往往存在着一个变量受到其他多个变量的影响的现象,表现为在线性回归模型中有多个解释变量,这样的模型被称为多元线性回归模型,多元指多个解释变量。
(2)偏回归系数
解答:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该解释变量增加1个单位对被解释变量带来的平均影响程度。
(3)正规方程组
解答:正规方程组指采用OLS估计线性回归模型时,对残差平方和关于各参数求偏导,并
??X?Y X?令偏导数为零得到的一组方程,其矩阵形式为X?
(4)调整的多元可决系数
解答:调整的多元可决系数R,又称独院判定系数,是一个用于描述伴随模型中解释变量的增加和多个解释变量对被解释变量的联合影响程度的量。它与R有如下关系:
22R2?1?(1?R2)
(5)多重共线性
n?1
n?k?1解答:多重共线性是多元回归中特有的一个概念,指多个解释变量间存在线性相关的情形。如果存在完全的线性相关性,则模型的参数就无法求出,OLS回归无法进行。
(6)联合假设检验
解答:联合假设检验是相对于单个假设检验来说的,指假设检验中的假设有多个,不止一个。如多元回归中的方程的显著性检验就是一个联合假设检验,而每个参数的t检验就是单个假设检验。
(7)受约束回归
解答:在世纪经济活动中,常常需要根据经济理论对模型中的变量参数施加一定的约束条件,对模型施加约束条件后进行回归,称为受约束回归。
(8)无约束回归
解答:无约束回归是与受约束回归相当对的一个概念,无需对模型中变量的参数施加约束条件进行的回归称为无约束回归
3—2 观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?
3(1)Yi??0??1Xi??i
(2)Yi??0??1logXi??i (3)lnYi??0??1lnXi??i (4)Yi??0??1(?2Xi)??i (5)Yi??0??i ?1Xi?(6)Yi?1??0(1?Xii)??i (7)Yi??0??1X1i??2X2i??i 10解答:(1),(2),(3),(7)变量非线性,系数线性: (4)变量线性,系数非线性: (5),(6)变量和系数均为非线性。
3—4 为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?
解答:在多元回归的参数模型中,在模型满足经典假设的条件下,参数的最小二乘估计量具有线性性、无偏性以及最小方差性,所以被称为最有线性无偏估计量(BLUE)。 对于多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计量的条件是
(X?X)?1存在,或者说各解释变量间不完全线性相关。
3—7 为什么从计量经济学模型得到的预测值不是一个确定的值?预测值的置信区间和置信的含义是什么?在相同的置信度下如何才能缩小置信区间?
解答: 原因有两个:(1)模型中的参数估计量不确定,它们随着抽样的不同而不同;
(2)其他随机因素的影响,即使找到了参数的真实值,由于其他随机因素的影响,也会使通过估计的模型得到的预测值具有不确定性。
正是由于预测值的不确定性,得到的仅仅是预测值的一个估计值。真实的预测值仅以某一个置信度处于以该估计值为中心的一个区间中,预测值的置信区间指:在给定1??的置信度下,被解释变量的预测值Y0的置信区间为
?1?1??t????t?????? ??Y1?X(XX)X?Y?Y1?X(XX)X00?0000?022预测值的置信度又称预测值的置信水平,指预测值出现在上述区间的概率,是表明预测值的可靠程度的量。
在相同的置信度下,通过增加样本容量,提高模型的拟合优度和提高样本观测值的分散度可以达到缩小置信区间的目的。
3—8 设模型Yi??0??1X1??2X2??i,试在下列条件下: (1)?1??2?1; (2)?1??2,
分别求出?1和?2的最小二乘估计量。
解答:(1)由条件?1??2?1,容易将原模型变换为如下一元回归:
Y?X2??0??1(X1?X2)??
因此
???1?(x?x)(y?x?(x?x)i1i2i2i1i2i1i2i2i1i2i2)
??1??2?(x?x)(y?x?(x?x)i2)
其中,小写字母表示对其均值的离差。
相关推荐: