2020年中考数学试卷(含答案)
一、选择题
1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )
A.③④ B.②③ C.①④ D.①②③
2.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A.2个 B.3个 C.4个 D.5个
3.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A.15° ( ) A.﹣3
B.22.5° C.30° D.45°
4.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为
B.﹣5
C.1或﹣3
D.1或﹣5
5.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A.6 B.8 C.10 D.12
6.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )
A.40° 7.估6A.3和4之间
B.50° 的值应在( )
B.4和5之间
C.5和6之间
D.6和7之间
C.60°
D.70°
8.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S?V?h?0?,这个函数的图象大致是( ) hA. B.
C.
D.
9.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )
A. B. C. D.
10.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是( ) A.
120150? xx?8B.
120150? x?8xC.
120150? x?8xD.
120150? xx?811.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=35米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为( )
A.5米 B.6米 C.8米 D.(3+5 )米
12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A.
B.
C. D.
二、填空题
13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.
14.关于x的一元二次方程ax2?3x?1?0的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是___________
15.如图,添加一个条件: ,使△ADE∽△ACB,(写出一个即可)
16.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为 . 17.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=
2的图像上,则菱形的面积为_______. x
18.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.
19.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量 出芽种子数 A 发芽率 出芽种子数 B 发芽率 100 96 0.96 96 0.96 200 165 0.83 192 0.96 500 491 0.98 486 0.97 1000 984 0.98 977 0.98 2000 1965 0.98 1946 0.97 下面有三个推断:
①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;
③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).
20.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.
三、解答题
21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量). (1)求y1与y2的函数解析式.
(2)求每天的销售利润W与x的函数解析式.
(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?
22.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)
23.数学活动课上,张老师引导同学进行如下探究:如图1,将长为在垂直于水平桌面活动一 如图3,将铅笔
绕端点顺时针旋转,
与
的直尺
的铅笔斜靠
的边沿上,一端固定在桌面上,图2是示意图.
交于点,当旋转至水平位置时,铅笔
的中点与点重合.
数学思考 (1)设
,点到
的距离的长是_________
. ,
的长是________
;
①用含的代数式表示:活动二
(2)①列表:根据(1)中所求函数关系式计算并补全表格. ..②与的函数关系式是_____________,自变量的取值范围是____________.
6 0 5 0.55 4 1.2 3.5 1.58 3 1.0 2.5 2.47 2 3 1 4.29 0.5 5.08 0
相关推荐: