乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。
即a×(b÷c)=a×b÷c 从左往右看是去括号, a÷(b×c)=a÷b÷c 从右往左看是添括号。 a÷(b÷c)=a÷b×c 例14 ①1320×500÷250 ②4000÷125÷8 ③5600÷(28÷6) ④372÷162×54
⑤2997×729÷(81×81)
解:① 1320×500÷250=1320×(500÷250) =1320×2=2640
②4000÷125÷8=4000÷(125×8) =4000÷1000=4
③5600÷(28÷6)=5600÷28×6 =200×6=1200
④372÷162×54=372÷(162÷54) =372÷3=124
⑤2997×729÷(81×81)=2997×729÷81÷81 =(2997÷81)×(729÷81)=37×9 =333
例1 计算9+99+999+9999+99999
解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧. 9+99+999+9999+99999
=(10-1)+(100-1)+(1000-1)+(10000-1) +(100000-1)
=10+100+1000+10000+100000-5 =111110-5 =111105.
例2 计算199999+19999+1999+199+19
解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里
11
是加1凑整.(如 199+1=200) 199999+19999+1999+199+19
=(19999+1)+(19999+1)+(1999+1)+(199+1) +(19+1)-5
=200000+20000+2000+200+20-5 =222220-5 =22225.
例3 计算(1+3+5+…+1989)-(2+4+6+…+1988)
解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:
从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:
从2到1988共有994个偶数,凑成497个1990. 1990×497+995—1990×497=995. 例4 计算 389+387+383+385+384+386+388
解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.
389+387+383+385+384+386+388 =390×7—1—3—7—5—6—4— =2730—28 =2702.
解法2:也可以选380为基准数,则有 389+387+383+385+384+386+388 =380×7+9+7+3+5+4+6+8 =2660+42 =2702.
例5 计算(4942+4943+4938+4939+4941+4943)÷6
解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.
(4942+4943+4938+4939+4941+4943)÷6
12
=(4940×6+2+3—2—1+1+3)÷6
=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运 =4940×6÷6+6÷6运用了除法中的巧算方法) =4940+1 =4941.
例6 计算54+99×99+45
解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了. 54+99×99+45 =(54+45)+99×99 =99+99×99 =99×(1+99) =99×100 =9900.
例7 计算 9999×2222+3333×3334
解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.
9999×2222+3333×3334 =3333×3×2222+3333×3334 =3333×6666+3333×3334 =3333×(6666+3334) =3333×10000 =33330000. 例8 1999+999×999 解法1:1999+999×999 =1000+999+999×999 =1000+999×(1+999) =1000+999×1000 =1000×(999+1) =1000×1000 =1000000.
解法2:1999+999×999 =1999+999×(1000-1)
13
=1999+999000-999 =(1999-999)+999000 =1000+999000 =1000000. 有多少个零.
总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.
14
相关推荐: