第一范文网 - 专业文章范例文档资料分享平台

2020年中考数学复习专题练:《三角形综合 》(包含答案)

来源:用户分享 时间:2025/5/28 9:32:50 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴AM=∴cosA=

=.

=,

(2)设AH交CD于K.

∵∠BAC=2∠ACD,∠BAH=∠CAH, ∴∠CAK=∠ACK, ∴CK=AK,设CK=AK=x,

在Rt△CKH中,则有x2=(4﹣x)2+32, 解得x=∴AK=CK=

, ,

∵∠ADK=∠ADC,∠DAK=∠ACD, ∴△ADK∽△CDA, ∴

=,设AD=m,DK=n,

则有,解得m=,n=.

∴AD=

(3)结论:AD:BE=5:6值不变.

理由:∵∠GBE=∠ABC,∠BAC+2∠ABC=180°,∠GBE+∠EBC+∠ABC=180°, ∴∠EBC=∠BAC, ∵∠EDC=∠BAC, ∴∠EBC=∠EDC, ∴D,B,E,C四点共圆, ∴∠EDB=∠ECB,

∵∠EDB+∠EDC=∠ACD+∠DAC,∠EDC=∠DAC, ∴∠EDB=∠ACD,

∴∠ECB=∠ACD, ∴△ACD∽△BCE, ∴

=.

5.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示: ∵CM⊥OA,AC⊥AB,

∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°, ∴∠MAC=∠OBA, 在△MAC和△OBA中,∴△MAC≌△OBA(AAS), ∴CM=OA=2,MA=OB=4, ∴OM=6,

∴点C的坐标为(﹣6,﹣2), 故答案为(﹣6,﹣2);

(Ⅱ)如图2,过D作DQ⊥OP于Q点, 则四边形OEDQ是矩形, ∴DE=OQ,

∵∠APO+∠QPD=90°,∠APO+∠OAP=90°, ∴∠QPD=∠OAP, 在△AOP和△PDQ中,∴△AOP≌△PDQ(AAS),

, ,

∴AO=PQ=2,

∴OP﹣DE=OP﹣OQ=PQ=OA=2;

(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点, 则∠HSF=∠GTF=90°=∠SOT, ∴四边形OSFT是正方形,

∴FS=FT=4,∠EFT=90°=∠HFG, ∴∠HFS=∠GFT, 在△FSH和△FTG中,,

∴△FSH≌△FTG(AAS), ∴GT=HS,

又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣∴OT═OS=4,

∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4, ∴﹣4﹣m=n+4, ∴m+n=﹣8.

4),

6.解:(1)在Rt△ABC中,tanA=由题意得,AP=3t, 在Rt△APQ中,tanA=∴PQ=AP=4t, 根据勾股定理得,AQ=当0<t≤时,如图1所示:

=,

==,

==5t.

CQ=AC﹣AQ=6﹣5t;

当<t≤

时,如图2所示:

CQ=AQ﹣AC=5t﹣6;

故答案为:6﹣5t或5t﹣6; (2)∵PQ⊥AB, ∴∠APQ=90°=∠ACB, ∵∠A=∠A, ∴△APQ∽△ACB, ∴

=,即

=,

解得:t=,

即当△APQ与△ABC的周长的比为1:4时,t为秒. (3)分两种情况:

①当0<t≤时,如图1所示:

△APQ与△ABC重叠部分图形的面积为S=△APQ的面积=×3t×4t=6t2; 即S=6t2(0<t≤);

②当<t≤时,如图2所示:

由(1)得:PQ=3t,PQ=4t,AQ=5t, 同(2)得:△CDQ∽△PAQ, ∴

,即

解得:CD=(5t﹣6),

∴△APQ与△ABC重叠部分图形的面积为S=△APQ的面积﹣△CDQ的面积=×3t×4t﹣×(5t﹣6)×(5t﹣6)=﹣即S=﹣

t2+

);

t﹣;

t2+t﹣(<t≤

(4)由(1)知,AQ=5t,PQ=4t,CQ=6﹣5t或CQ=5t﹣6, 当CQ=PQ时,四边形BCQP是轴对称图形, 则4t=6﹣5t, ∴t=; 当<t≤

时,设PQ和BC相交于D,

当AC=AP时,四边形ACDP是轴对称图形, 则6=3t, ∴t=2.

综上所述,当直线PQ把△ABC分成的两部分图形中有一个是轴对称图形时,t的值为秒或2秒.

2020年中考数学复习专题练:《三角形综合 》(包含答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c179180ijhn1xep036fj71ujtp7zqyg019ha_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top