1.列出右图所示二叉树的叶结点、分支结点和每个结点的层次。
2.使用 (1) 顺序表示和 (2) 二叉链表表示法,分别画出上图所示二叉树的存储表示。 3.在结点个数为n (n>1)的各棵树中,高度最小的树的高度是多少?它有多少个叶结点?多少个分支结点?高度最大的树的高度是多少?它有多少个叶结点?多少个分支结点? 4.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。
5.如果一棵树有n1个度为1的结点, 有n2个度为2的结点, … , nm个度为m的结点, 试问有多少个度为0的结点? 试推导之。
6.若用二叉链表作为二叉树的存储表示,试针对以下问题编写递归算法: (1) 统计二叉树中叶结点的个数。
(2) 以二叉树为参数,交换每个结点的左子女和右子女。 (3) 求二叉树的深度。
7.一棵高度为h的满k叉树有如下性质: 第h层上的结点都是叶结点, 其余各层上每个结点都有k棵非空子树, 如果按层次自顶向下, 同一层自左向右, 顺序从1开始对全部结点进行编号, 试问:
(1) 各层的结点个数是多少?
(2) 编号为i的结点的父结点(若存在)的编号是多少?
(3) 编号为i的结点的第m个孩子结点(若存在)的编号是多少?
(4) 编号为i的结点有右兄弟的条件是什么? 其右兄弟结点的编号是多少? (5) 若结点个数为 n, 则高度h是n 的什么函数关系? 8.请画出下图所示的树所对应的二叉树。
1 2 3 4 6 8 5 7 9.已知一棵二叉树的前序遍历的结果是ABECDFGHIJ, 中序遍历的结果是EBCDAFHIGJ, 试画出这棵二叉树。
10.给定权值集合{15, 03, 14, 02, 06, 09, 16, 17}, 构造相应的霍夫曼树, 并计算它的带权路径长度。
相关推荐: