中考数学 二元一次方程组易错压轴解答题
一、二元一次方程组易错压轴解答题
1.某商场经销A,B两款商品,若买20件A商品和10件B商品用了360元;买30件A商品和5件B商品用了500元. (1)求A、B两款商品的单价;
(2)若对A、B两款商品按相同折扣进行销售,某顾客发现用640元购买A商品的数量比用224元购买B商品的数量少20件,求对A、B两款商品进行了几折销售?
(3)若对A商品进行5折销售,B商品进行8折销售,某顾客同时购买A、B两种商品若干件,正好用完49.6元,问该顾客同时购买A、B两款商品各几件? 2.已知关于x , y的方程满足方程组 (1)若x﹣y=2,求m的值;
(2)若x , y , m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|; (3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值. 3.在平面直角坐标系中,O为坐标原点,点A的坐标为
,且 (1)若
满足
.
,点B的坐标为
.
,判断点 处于第几象限,给出你的结论并说明理由;
的面积等于10,若存
(2)若 为最小正整数, 轴上是否存在一点 ,使三角形 在,求点 的坐标;若不存在,请说明理由. (3)点 为坐标系内一点,连接 标.
,若
,且
,直接写出点 的坐
4.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如下表所示:(假设每辆车均满载) 车型 甲 乙 丙 8 10 汽车运载量(吨/辆) 5 汽车运费(元/辆) 1000 1200 1500 (1)若全部物资都用甲、乙两种车型来运送,需运费24000元,问分别需甲、乙两种车型各多少辆?
(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送). 5.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
(1)求每台A型电脑和每台B型打印机的价格分别是多少元?
(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?
6.李师傅要给一块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等,B款瓷砖的长大于宽.已知一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:
(1)分别求出每款瓷砖的单价. 了多少块?
(2)若李师傅买两种瓷砖共花了1000元,且A款瓷砖的数量比B款多,则两种瓷砖各买(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为________米(直接写出答案).
7.某自行车制造厂开发了一款新式自行车,计划6月份生产安装600辆,由于抽调不出足够的熟练工来完成新式自行车的安装,工厂决定招聘一些新工人:他们经过培训后也能独立进行安装.调研部门发现:1名熟练工和2名新工人每日可安装8辆自行车;2名熟练工和3名新工人每日可安装14辆自行车。
(1)每名熟练工和新工人每日分别可以安装多少辆自行车?
(2)如果工厂招聘n名新工人(0 (3)该自行车关于轮胎的使用有以下说明:本轮胎如安装在前轮,安全行使路程为12千公里;如安装在后轮,安全行使路程为8千公里.请问一对轮胎能行使的最长路程是多少千公里? 8.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问: (1)春游学生共多少人,原计划租45座客车多少辆? (2)若租用同一种车,要使每位同学都有座位,怎样租车更合算. 9.某市中学生举行足球联赛,共赛了17轮(即每队均需参赛17场),记分办法是胜-场得3分。平场得1分,负一场得0分. (1)在这次足球赛中,若小虎足球队踢平场数与踢负场数相同,共积16分,求该队胜了几场; (2)在这次足球赛中,若小虎足球队总积分仍为16分,且踢平场数是踢负场数的整数倍,试推算小虎足球队踢负场数的情况有几种, 10.如图,在平面直角坐标系中,长方形ABCD的边AB在y轴正半轴上,顶点A的坐标为(0,2),设顶点C的坐标为(a,b). (1)顶点B的坐标为________,顶点D的坐标为________(用a或b表示); (2)如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程2x+3y=12成立,就说这个点的坐标是方程2x+3y=12的解.已知顶点B和D的坐标都是方程2x+3y=12的解,求a,b的值; (3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG, 这次平移可以看成是先将长方形ABCD向右平移________个单位长度,再向下平移________个单位长度的两次平移; (4)若点P(m,n)是对角线BD上的一点,且点P的坐标是方程2x+3y=12的解,试说明平移后点P的对应点P′的坐标也是方程2x+3y=12的解. 11.对x , y定义一种新运算F , 规定:F(x , y)=ax+by(其中a , b均为非零常数).例如:F(3,4)=3a+4b . (1)已知F(1,﹣1)=﹣1,F(2,0)=4. ①求a , b的值; ②已知关于p的不等式组 ,求p的取值范围; (2)若运算F满足 ,请你直接写出F(m , m)的取值范围(用含m 的代数式表示,这里m为常数且m>0). 12.某公园的门票价格如下表所示: 购票人数 1~50人 51~100人 100人以上 每人门票价 20元 17元 14元 某校初一(1)(2)两个班去游览公园,其中(1)班人数较少,不足50人,(2)班人数较多,超过50人,但是不超过100人.如果两个班都以班为单位分别购票,则一共应付1912元;如果两个班联合起来,作为个团体购票,则只需付1456元 (1)列方程或方程组求出两个班各有多少学生? (2)若(1)班全员参加,(2)班有20人不参加此次活动,请你设计一种最省钱方式来帮他们买票,并说明理由.
相关推荐: