点评:考查了绝对值的性质,要求绝对值里的相关性质要牢记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.该题易错点是分析a,b的符号不透彻,漏掉一种情况. 类型一:有理数的大小比较 1、如图,正确的判断是( )
A.a<-2 B.a>-1 C.a>b D.b>2
考点: 数轴;有理数大小比较.
分析:根据数轴上点的位置关系确定对应点的大小.注意:数轴上的点表示的数右边的数总比左边的数大. 解答:解:由数轴上点的位置关系可知a<-2<-1<0<1<b<2,则
A、a<-2,正确; B、a>-1,错误; C、a>b,错误; D、b>2,错误. 故选A.
点评:本题考查了有理数的大小比较.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.本题中要注意:数轴上的点表示的数右边的数总比左边的数大.
2、比较1,-2.5,-4的相反数的大小,并按从小到大的顺序用“<”边接起来,为_______ 考点: 有理数大小比较;数轴.
分析: 1,-2.5,-4的相反数分别是-1,2.5,4.根据数轴上右边的数总大于左边的数可排列出大小顺序. 解答:解:1的相反数是-1,-2.5的相反数是2.5,-4的相反数是4. 按从小到大的顺序用“<”连接为:-1<2.5<4.
点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 类型一:有理数的加法
1.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于( ) A.﹣1 B.0 C.1 D.2 考点:有理数的加法。
分析:先根据有理数的相关知识确定a、b、c的值,然后将它们代入a+b+|c|中求解. 解答:解:由题意知:a=1,b=﹣1,c=0; 所以a+b+|c|=1﹣1+0=0. 故选B.
点评:本题主要考查的是有理数的相关知识.最小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0.
类型二:有理数的加法与绝对值
1.已知|a|=3,|b|=5,且ab<0,那么a+b的值等于( ) A.8 B.﹣2 C.8或﹣8 D.2或﹣2 考点:绝对值;有理数的加法。 专题:计算题;分类讨论。
分析:根据所给a,b绝对值,可知a=±3,b=±5;又知ab<0,即ab符号相反,那么应分类讨论两种情况,a正b负,a负b正,求解.
解答:解:已知|a|=3,|b|=5, 则a=±3,b=±5;
且ab<0,即ab符号相反,
当a=3时,b=﹣5,a+b=3﹣5=﹣2; 当a=﹣3时,b=5,a+b=﹣3+5=2. 故选D.
点评:本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0. 变式:
2.已知a,b,c的位置如图,化简:|a﹣b|+|b+c|+|c﹣a|= ﹣2a .
考点:数轴;绝对值;有理数的加法。
分析:先根据数轴上的大小关系确定绝对值符号内代数式的正负情况a﹣b<0,b+c<0,c﹣a>0,再根据绝对值的性质去掉绝对值符号进行有理数运算即可求解.注意:数轴上的点右边的总比左边的大. 解答:解:由数轴可知a<c<0<b,所以a﹣b<0,b+c<0,c﹣a>0,则
9 / 16
|a﹣b|+|b+c|+|c﹣a|=b﹣a﹣b﹣c+c﹣a=﹣2a.
点评:此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.要注意先确定绝对值符号内代数式的正负情况,再根据绝对值的性质去掉绝对值符号进行有理数运算.
类型一:正数和负数,有理数的加法与减法 选择题
1.某汽车厂上半年一月份生产汽车200辆,由于另有任务,每月上班人数不一定相等,上半年各月与一月份的生产量比较如下表(增加为正,减少为负).则上半年每月的平均产量为( ) 月份 二 三 四 五 六 增减(辆) ﹣5 ﹣9 ﹣13 +8 ﹣11 A.205辆 B.204辆 C.195辆 D.194辆 考点:正数和负数;有理数的加法;有理数的减法。 专题:应用题;图表型。
分析:图表中的各数据都是和一月份比较所得,据此可求得上半年每月和第一月份产量的平均增减值,再加上一月份的产量,即可求得上半年每月的平均产量.
解答:解:由题意得:上半年每月的平均产量为200+=195(辆).
故选C.
点评:此题主要考查正负数在实际生活中的应用.需注意的是表中没有列出一月份与一月份的增减值,有些同学在求平均值时往往忽略掉一月份,从而错误的得出答案D. 2.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:
现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差( ) 大米种类 A品牌大米 B品牌大米 C品牌大米 质量标示 (10±0.1)kg (10±0.3)kg (10±0.2)kg A.0.8kg B.0.6kg C.0.4kg D.0.5kg 考点:正数和负数;有理数的减法。 专题:图表型。
分析:利用正负数的意义,求出每种品牌的质量的范围差即可. 解答:解:A品牌的质量差是:0.1﹣(﹣0.1)=0.2kg; B品牌的质量差是:0.3﹣(﹣0.3)=0.6kg; C品牌的质量差是:0.2﹣(﹣0.2)=0.4kg.
∴从中任意拿出两袋不同品牌的大米,选B品牌的最大值和C品牌的最小值,相差为0.3﹣(﹣0.2)=0.5kg,此时质量差最大. 故选D.
点评:理解标识的含义,理解“正”和“负”的相对性,确定一对具有相反意义的量,是解决本题的关键. 3.﹣9,6,﹣3三个数的和比它们绝对值的和小 24 . 考点:绝对值;有理数的加减混合运算。 分析:根据绝对值的性质及其定义即可求解. 解答:解:(9+6+3)﹣(﹣9+6﹣3)=24.
答:﹣9,6,﹣3三个数的和比它们绝对值的和小24.
点评:本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,同时考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.
绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 4.已知a、b互为相反数,且|a﹣b|=6,则b﹣1= 2或﹣4 . 考点:有理数的减法;相反数;绝对值。
分析:由a、b互为相反数,可得a+b=0;由于不知a、b的正负,所以要分类讨论b的正负,才能利用|a﹣b|=6求b的值,再代入所求代数式进行计算即可.
解答:解:∵a、b互为相反数,∴a+b=0即a=﹣b. 当b为正数时,∵|a﹣b|=6,∴b=3,b﹣1=2; 当b为负数时,∵|a﹣b|=6,∴b=﹣3,b﹣1=﹣4. 故答案填2或﹣4.
10 / 16
点评:本题主要考查了代数式求值,涉及到相反数、绝对值的定义,涉及到绝对值时要注意分类讨论思想的运用.
5.一家饭店,地面上18层,地下1层,地面上1楼为接待处,顶楼为公共设施处,其余16层为客房;地面下1楼为停车场.
(1)客房7楼与停车场相差 7 层楼;
(2)某会议接待员把汽车停在停车场,进入该层电梯,往上14层,又下5层,再下3层,最后上6层,那么他最后停在 12 层;
(3)某日,电梯检修,一服务生在停车场停好汽车后,只能走楼梯,他先去客房,依次到了8楼、接待处、4楼,又回接待处,最后回到停车场,他共走了 22 层楼梯.
考点:正数和负数;有理数的加减混合运算。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 解答:解:“正”和“负”相对,所以,若记地上为正,地下为负.由此做此题即可. 故(1)7﹣(﹣1)﹣1=7(层),(2分) 答:客房7楼与停车场相差7层楼. (2)14﹣5﹣3+6=12(层),(3分) 答:他最后停在12层.
(3)8+7+3+3+1=22(层),(3分) 答:他共走了22层楼梯.
点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学. 6.某人用400元购买了8套儿童服装,准备以一定价格出售.他以每套55元的价格为标准,将超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2(单位:元)他卖完这八套儿童服装后是 盈利 ,盈利或亏损了 37 元. 考点:有理数的加减混合运算;正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.他以每套55元的价格出售,售完应得盈利5×8=40元,要想知道是盈利还是亏损,只要把他所记录的数据相加再与他应得的盈利相加即可,如果是正数,则盈利,是负数则亏损. 解答:解:+2+(﹣3)+2+1+(﹣2)+(﹣1)+0+(﹣2) =﹣3 5×8+(﹣3)=37(元) 答:他盈利了37元.
点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 类型一:有理数的乘法
1.绝对值不大于4的整数的积是( ) A.16 B.0 C.576 D.﹣1 考点:有理数的乘法;绝对值。 专题:计算题。
分析:先找出绝对值不大于4的整数,再求它们的乘积.
解答:解:绝对值不大于4的整数有,0、1、2、3、4、﹣1、﹣2、﹣3、﹣4,所以它们的乘积为0. 故选B.
点评:绝对值的不大于4的整数,除正数外,还有负数.掌握0与任何数相乘的积都是0. 2.五个有理数的积为负数,则五个数中负数的个数是( ) A.1 B.3 C.5 D.1或3或5 考点:有理数的乘法。
分析:多个有理数相乘的法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.
解答:解:五个有理数的积为负数,负数的个数是奇数个,则五个数中负数的个数是1、3、5. 故选D.
点评:本题考查了有理数的乘法法则.
3.比﹣3大,但不大于2的所有整数的和为 0 ,积为 0 . 考点:有理数的乘法;有理数大小比较;有理数的加法。
11 / 16
分析:根据题意画出数轴便可直接解答.
解答:解:根据数轴的特点可知:比﹣3大,但不大于2的所有整数为:﹣2,﹣1,0,1,2. 故其和为:(﹣2)+(﹣1)+0+1+2=0, 积为:(﹣2)×(﹣1)×0×1×2=0.
点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 4.已知四个数:2,﹣3,﹣4,5,任取其中两个数相乘,所得积的最大值是 12 . 考点:有理数的乘法。
分析:由于有两个负数和两个正数,故任取其中两个数相乘,最大的数为正数,且这两个数同号.故任取其中两个数相乘,最大的数=﹣3×(﹣4)=12.
解答:解:2,﹣3,﹣4,5,这四个数中任取其中两个数相乘,所得积的最大值=﹣3×(﹣4)=12. 故本题答案为12.
点评:几个不等于零的数相乘,积的符号由负因数的个数决定:当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正. 类型一:倒数
1.负实数a的倒数是( )
A.﹣a B. C.﹣ D.a
考点:倒数。
分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数可知.
解答:解:根据倒数的定义可知,负实数a的倒数是.
故选B.
点评:本题主要考查了倒数的定义. 变式:
2.﹣0.5的相反数是 0.5 ,倒数是 ﹣2 ,绝对值是 0.5 . 考点:倒数;相反数;绝对值。
分析:根据相反数的定义,只有符号不同的两个数互为相反数. 根据倒数的定义,互为倒数的两数积为1;
正数的绝对值是其本身,负数的绝对值是它的相反数. 解答:解:﹣0.5的相反数是0.5; ﹣0.5×(﹣2)=1,因此﹣0.5的倒数是﹣2; ﹣0.5是负数,它的绝对值是其相反数,为0.5.
点评:本题主要考查相反数、倒数和绝对值的定义.要记住,正数的相反数是负数,负数的相反数是正数,0的相反数是本身.
3.倒数是它本身的数是 ±1 ,相反数是它本身的数是 0 . 考点:倒数;相反数。
分析:根据相反数,倒数的概念可知. 解答:解:倒数是它本身的数是±1,相反数是它本身的数是0. 点评:主要考查相反数,倒数的概念及性质.
相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0; 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 类型二:有理数的除法
1.下列等式中不成立的是( )
12 / 16
相关推荐: