张家界市2009年初中毕业学业考试试卷
数 学
考生注意:本学科试卷共三道大题25小题,满分120分,考试时量120分钟. 一、选择题(本大题共8小题,每小题3分,满分24分) 1.在实数0,2,?A.1个
1,0.74,π中,无理数有( ) 3C.3个
D.4个
”,“2”,“∧”,“4”,“?”
B.2个
32.用计算器求2值时,需相继按“2”,“∧”,“3”,“?”键,若小红相继按“键,则输出结果是( ) A.4
4.不等式组?
5.下列运算正确的是( ) A.2ab?ab?1 C.x?x?x
2322B.5 C.6 D.16
3.下图所示的几何体的主视图是( )
A. B. C. D.
?4x?7?5(x?1)的解集在数轴上表示为( )
?2x?24?6?3x0 6 B.
0 6 C.
0 6 D.
0 6 A.
sin45°?1 B.tan45°?D.(a)?a
235
6.下列不是必然事件的是( ) A.两直线相交,对顶角相等
B.三角形的外心到三个顶点的距离相等
C.三角形任意两边之和大于第三边 D.两相似多边形面积的比等于周长的比 7.如图,AB∥CD,且?1?115°,?A?75°, 则?E的度数是( ) A.30° C.40°
B.50° D.60°
A C E 1 D B
8.为了预防“HINI”流感,某校对教室进行药熏消毒,药品燃烧时,室内每立方米的含药量与时间成正比;燃烧后,室内每立方米含药量与时间成反比,则消毒过程中室内每立方米含药量y与时间t的函数关系图象大致为( )
O A.
t O B.
t y y y y O C.
t O D.
t
二、填空题(本大题共8小题,每小题3分,满分24分) 9.?3的绝对值为 .
10.如图,?O是△ABC的内切圆,与边BC,CA,AB 的切点分别为D,E,F,若?A?70°,则?EDF? .
11.张家界国际乡村音乐周活动中,来自中、日、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“美—日—中”顺序演奏的概率是 . 12.将函数y??3x?3的图象向上平移2个单位,得到函数 的图象. 13.分解因式a?ab? .
14.我市甲、乙两景点今年5月上旬每天接待游客的人数如图所示,甲、乙两景点日接待游客人数的方差大小关系为:S甲2 S乙2.
15.对于正实数a,b作新定义:a?b?ba?a?b,在此定义下,若9?x?55,则x的值为 . 16.如图,等腰梯形ABCD中,AD∥BC,且AD?2800 2600 2400 2200 2000 1800 人数 甲 乙 32A F B O D
E C 1 2 3 4 5 6 7 8 9 10 日
1BC,E为AD上一点,AC与BE交于点F,若2A F B
C
E D
△AEF的面积AE:DE?2:1,则? .
△CBF的面积三、解答题(本题共9小题,满分72分) 17.(本小题6分)
1?1?计算???(5?3)°?2sin45°?
2?1?2?
18.(本小题6分)
小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其它各边的长,若已知
?1CD?2,求AC的长.
D B A
C
19.先化简,后求值(本小题6分)
421??其中a?2?2 2a?4a?2a?2
20.(本小题6分)
在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(?1,0),请按要求画图与作答
(1) 把△ABC绕点P旋转180°得△A?B?C?. (2)把△ABC向右平移7个单位得△A??B??C??.
(3)△A?B?C?与△A??B??C??是否成中心对称,若是,找出对称中心P?,并写出其坐标.
21.列方程解应用题(本小题9分)
“阳黄公路”开通后,从长沙到武陵源增加了一条新线路,新线路里程在原线路长360Km的基础上缩短了50Km,今有一旅游客车和小车同时从长沙出发前往武陵源,旅游客车走新线路,小车因故走原线路,中途停留6分钟.若小车速度是旅游客车速度的1.2倍,且两车同时到达武陵源,求两车的速度各是多少?
22.(本小题9分)
如图,有两个动点E,F分别从正方形ABCD的两个顶点B,C同时出发,以相同速度分别沿边BC和CD移动,问:
(1)在E,F移动过程中,AE与BF的位置和大小有何关系?并给予证明. (2)若AE和BF相交点O,图中有多少对相似三角形?请把它们写出来.
yA B C P OxD F C E O A B
23.(本小题9分)
我市今年初三体育考试结束后,从某县3000名参考学生中抽取了100名考生成绩进行统计分析(满分100分,记分均为整数),得到如图所示的频数分布直方图,请你根据图形完成下列问题: (1)本次抽样的样本容量是 . (2)请补全频数分布直方图.
(3)若80分以上(含80分)为优秀,请你据此.估算该县本次考试的优秀人数.
24.(本小题9分)
有若干个数,第1个数记为a1,第2个数记为a2,第3个数记为a3,?第n个数记为an,若a1??第二个数起,每个数都等于与前面那个数的差的倒数. ............1............(1)分别求出a2,a3,a4的值. (2)计算a1?a2?a3???a36的值.
25.(本小题12分)
40 30 20 10 2 3 5 分数
30 20 人数 39.5 49.5 59.5 69.5 79.5 89.5 100 1,从3.
0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作在平面直角坐标系中,已知A(?4,圆的切线交x轴于点D.
(1)求过A,B,C三点的抛物线的解析式 (2)求点D的坐标
(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由?
y C D x 2 A ?4 B O 1
张家界市2009年初中毕业学业考试数学试卷答案
一、选择题
1.B 2.A 3.B 4.A 5.C 6.D 7.C 8.A 二、填空题 9.3
10.55°
11.
1 6
12.y??3x?5 15.16
16.
13.a(a?b)(a?b) 三、解答题
17.原式?2?1?2?14.S甲2?S乙2
1 9212?1 ························································· 3分 ??22?12?1··················································································· 4分 ?2?1?2?(2?1) ·
····················································································· 5分 ?2?1?2?2?1 ·
?2 ············································································································· 6分 18.解:?BD?CD?2
················································································ 2分 ?BC?22?22?22 ·
?AB?x,则AC?2x
··················································································· 4分 ?x2?(22)2?(2x)2 ·
?x?26 ··································································································· 5分 34AC?2AB?6 ························································································· 6分
3421??
(a?2)(a?2)a?2a?219.解:原式???42(a?2)a?2?? ·················································· 2分
(a?2)(a?2)(a?2)(a?2)(a?2)(a?2)4?2(a?2)?(a?2) ··················································································· 3分
(a?2)(a?2)
相关推荐: