第一范文网 - 专业文章范例文档资料分享平台

2018年山东省枣庄市中考数学试卷(含答案解析版)

来源:用户分享 时间:2025/5/30 8:41:10 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

<16000 13 6000≤x<20000 2d 0000≤x<2

4000

请根据以上信息,解答下列问题:

(1)写出a,b,c,d的值并补全频数分布直方图;

(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名

(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.

【考点】X6:列表法与树状图法;V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图.

【分析】(1)根据频率=频数÷总数可得答案;

(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案; (3)画树状图列出所有等可能结果,根据概率公式求解可得. 【解答】解:(1)a=8÷50=,b=12÷50=,c=50×=10,d=50×=2,

补全频数分布直方图如下:

(2)37800×(++)=11340,

答:估计日行走步数超过12000步(包含12000步)的教师有11340名;

(3)设16000≤x<20000的3名教师分别为A、B、C, 20000≤x<24000的2名教师分别为X、Y, 画树状图如下:

由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.

【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.

23.(8分)(2018枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D. (1)求线段AD的长度;

(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切请说明理由.

【考点】M5:圆周角定理;MD:切线的判定;S9:相似三角形的判定与性质. 【专题】15 :综合题.

【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长. (2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.

【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm; 连接CD,∵BC为直径, ∴∠ADC=∠BDC=90°; ∵∠A=∠A,∠ADC=∠ACB, ∴Rt△ADC∽Rt△ACB;

∴,∴;

(2)当点E是AC的中点时,ED与⊙O相切; 证明:连接OD,

∵DE是Rt△ADC的中线; ∴ED=EC, ∴∠EDC=∠ECD; ∵OC=OD, ∴∠ODC=∠OCD;

∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°; ∴ED⊥OD, ∴ED与⊙O相切.

【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.

24.(10分)(2018枣庄)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG. (1)求证:四边形EFDG是菱形;

(2)探究线段EG、GF、AF之间的数量关系,并说明理由; (3)若AG=6,EG=2

,求BE的长.

2018年山东省枣庄市中考数学试卷(含答案解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c19riq7s4k73pit886asl2xn8u9whcj004am_8.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top