(2)ÈÎÈ¡x1,x2?R,ÇÒx1?x2
1?2x11?2x2(1?2x1)(2x2?1)?(1?2x2)(2x1?1)2(2x2?2x1) Ôòf(x1)?f(x2)?x=x ?x2?x2x1x211(2?1)(2?1)2?12?1(2?1)(2?1)?x1?x2,?2x1?2x2?0,ÓÖ?(2x1?1)(2x2?1)?0?f(x1)?f(x2)?0,?f(x)ΪRÉϵļõº¯Êý.22
(3)? t?R,²»µÈʽf(t?2t)?f(2t?k)?0ºã³ÉÁ¢, ?f(t?2t)??f(2t?k) ?f(x)ÎªÆæº¯Êý, ?f(t?2t)?f(k?2t)?f(x)Ϊ¼õº¯Êý, ?t2?2t?k?2t2. ¼´k?3t2?2tºã³ÉÁ¢,¶ø3t2?2t?3(t?)2?222213111??. ?k??. 333¡¡¡¡¡¡¡¡¡¡3·Ö
22. ½â£º (1)ÔÚ¢ÚÖÐÁîx=1,ÓÐ1¡Üf(1)¡Ü1,¹Êf(1)=1
(2)ÓÉ¢ÙÖª¶þ´Îº¯ÊýµÄ¹ØÓÚÖ±Ïßx=-1¶Ô³Æ,ÇÒ¿ª¿ÚÏòÉÏ
1¹ÊÉè´Ë¶þ´Îº¯ÊýΪf(x)=a(x+1)2,(a>0),¡ßf(1)=1,¡àa=
41¡àf(x)= (x+1)2
4 (3)¼ÙÉè´æÔÚt¡ÊR,Ö»Ðèx¡Ê[1,m],¾ÍÓÐf(x+t)¡Üx.
1f(x+t)¡Üx?(x+t+1)2¡Üx?x2+(2t-2)x+t2+2t+1¡Ü0.
42Áîg(x)=x+(2t-2)x+t2+2t+1,g(x)¡Ü0,x¡Ê[1,m].
¡¡¡¡¡¡¡¡¡¡7·Ö
??g(1)?0??4?t?0?? ??g(m)?0??1?t?2?t?m?1?t?2?t¡àm¡Ü1£t+2?t¡Ü1£(£4)+2?(?4)=9
t=-4ʱ,¶ÔÈÎÒâµÄx¡Ê[1,9]
ºãÓÐg(x)¡Ü0, ¡àmµÄ×î´óֵΪ9. ¡¡¡¡¡¡¡¡¡¡ 12·Ö
6
Ïà¹ØÍÆ¼ö£º