2011年—2017年新课标全国卷Ⅰ文科数学分类汇编
6.数列
一、选择题
【2015,7】已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S8=4S4,则a10=( )
1719 B. C.10 D.12 222【2013,6】设首项为1,公比为的等比数列{an}的前n项和为Sn,则( ).
3A.
A.Sn=2an-1 B.Sn=3an-2 C.Sn=4-3an D.Sn=3-2an
n【2012,12】数列{an}满足an?1?(?1)an?2n?1,则{an}的前60项和为( )
A.3690 B.3660 C.1845 D.1830 二、填空题
【2015,13】数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n= . 【2012,14】14.等比数列{an}的前n项和为Sn,若S3?3S2?0,则公比q?_____. 三、解答题
【2017,17】记Sn为等比数列?an?的前n项和,已知S2?2,S3??6.
(1)求?an?的通项公式;(2)求Sn,并判断Sn?1,Sn,Sn?2是否成等差数列.
【2016,17】已知?an?是公差为3的等差数列,数列?bn?满足b1=1,b2=,anbn?1?bn?1?nbn.
(1)求?an?的通项公式;(2)求?bn?的前n项和.
【2013,17】已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(1)求{an}的通项公式;(2)求数列?
【2011,17】已知等比数列?a?中,a2?13??1?的前n项和.
?a2n?1a2n?1?11,公比q?. 331?an(1)Sn为?an?的前n项和,证明:Sn?;
2(2)设bn?log3a1?log3a2?L?log3an,求数列bn的通项公式.
2011年—2017年新课标全国卷Ⅰ文科数学分类汇编
6.数列(解析版)
一、选择题
【2015,7】已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S8=4S4,则a10=( ) B
1719 B. C.10 D.12 22111119解:依题8a1??8?7?4(4a1??4?3),解得a1=,∴a10?a1?9d??9?,故选B.
22222A.
【2015,13】数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n= . 6
2(1?2n)?126,∴ 2n=64,∴n=6. 解:数列{an}是首项为2,公比为2的等比数列,∴Sn?1?2【2013,6】设首项为1,公比为
2的等比数列{an}的前n项和为Sn,则( ). 3A.Sn=2an-1 B.Sn=3an-2 C.Sn=4-3an D.Sn=3-2an
21?ana?1?q?a1?anq3=3-2an,故选D. 解析:选D.Sn?1??21?q1?q1?3nn【2012,12】数列{an}满足an?1?(?1)an?2n?1,则{an}的前60项和为( )
A.3690 B.3660 C.1845 D.1830
na5?a4?7,a3?a2?3,a4?a3?5,a6?a5?9,【解析】因为an?1?(?1)an?2n?1,所以a2?a1?1,
a7?a6?11,……,a58?a57?113,a59?a58?115,a60?a59?117.
由a2?a1?1,a3?a2?3可得a1?a3?2; 由a6?a5?9,a7?a6?11可得a5?a7?2; ……
由a58?a57?113,a59?a58?115可得a57?a59?2;
从而a1?a3?a5?a7?L?a57?a59?(a1?a3)?(a5?a7)?L?(a57?a59)?2?15?30. 又a2?a1?1,a4?a3?5,a6?a5?9,…,a58?a57?113,a60?a59?117, 所以(a2?a4?a6?L?a60)?(a1?a3?a5?L?a59)
?(a2?a1)?(a4?a3)?(a6?a5)?L?(a60?a59)?1?5?9?L?117
?30?118?1770. 2从而a2?a4?a6?L?a60?a1?a3?a5?L?a59?1770?30?1770?1800.
因此S60?a1?a2?a3?a4?L?a59?a60?(a1?a3?L?a59)?(a2?a4?L?a60)
?30?1800?1830.故选择D.
二、填空题
【2015,13】数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n= . 6
2(1?2n)?126,∴ 2n=64,∴n=6. 解:数列{an}是首项为2,公比为2的等比数列,∴Sn?1?2【2012,14】14.等比数列{an}的前n项和为Sn,若S3?3S2?0,则公比q?___________. 【答案】?2.
2【解析】由已知得S3?a1?a2?a3?a1?a1q?a1q,3S2?3a1?3a2?3a1?3a1q,
2因为S3?3S2?0,所以4a1?4a1q?a1q?0
而a1?0,所以q?4q?4?0,解得q??2.
三、解答题
【2017,17】记Sn为等比数列?an?的前n项和,已知S2?2,S3??6. (1)求?an?的通项公式;
(2)求Sn,并判断Sn?1,Sn,Sn?2是否成等差数列.
【解析】(1)设首项a1,公比q,依题意,q?1,由a3?S3?S2??8,
2???a3?a1q??8?a1??2,解得?, ?2???q??2?S2?a1?a2?a1?a1q?22?an?a1qn?(?2)n.
(2)要证Sn?1,Sn,Sn?2成等差数列,只需证:Sn?1?Sn?2?2Sn, 只需证:Sn?1?Sn?Sn?2?Sn?0,只需证:an?1?an?1?an?2?0, 只需证:an?2??2an?1(*),由(1)知(*)式显然成立,
?Sn?1,Sn,Sn?2成等差数列.
【2016,】17.(本小题满分12分)
已知?an?是公差为3的等差数列,数列?bn?满足b1=1,b2=,anbn?1?bn?1?nbn.
13(1)求?an?的通项公式; (2)求?bn?的前n项和.
17. 解析 (1)由题意令anbn?1?bn?1?nbn中n?1,即a1b2?b2?b1, 解得a1?2,故an?3n?1n?N*.
(2)由(1)得?3n?1?bn?1?bn?1?nbn,即bn?1???1bn?n?N*?, 3n?11?1?故?bn?是以b1?1为首项,q?为公比的等比数列,即bn???3?3?1??1?1?n??3??3?1.
所以?bn?的前n项和为Sn?n?1122?31?3?n?N?,
*【2013,17】 (本小题满分12分)已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(1)求{an}的通项公式;
(2)求数列???1?的前n项和.
?a2n?1a2n?1?n(n?1)d. 2解:(1)设{an}的公差为d,则Sn=na1?由已知可得??3a1?3d?0,
?5a1?10d?5,解得a1=1,d=-1.
故{an}的通项公式为an=2-n. (2)由(1)知
111?11????=?,
a2n?1a2n?1?3?2n??1?2n?2?2n?32n?1?从而数列???1?的前n项和为
?a2n?1a2n?1?1?111111?????L???? 2??11132n?32n?1?n=. 1?2n
11,公比q?. 331?an(1)Sn为?an?的前n项和,证明:Sn?;
2【2011,17】已知等比数列?a?中,a2?(2)设bn?log3a1?log3a2?L?log3an,求数列bn的通项公式.
1?1?1???1?n?n?11?n1?an1?1?13?3???3?【解析】(1)因为an?????n,Sn?,所以Sn?.
2213?3?31?3(2)bn?log3a1?log3a2?L?log3an???1?2?L?n???n?n?1?.所以?bn?的通项公式为2bn??n?n?1?. 2
相关推荐: