第一范文网 - 专业文章范例文档资料分享平台

通用版2020版高考数学大二轮复习 大题专项练习 分类汇编全集 文

来源:用户分享 时间:2025/5/18 13:18:44 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

大题专项练(一) 三角函数

A组 基础通关

1.已知在△ABC中,角A,B,C的对边分别是a,b,c,且ccos B+(b-2a)cos C=0. (1)求角C的大小;

(2)若c=2,求△ABC的面积S的最大值. 解(1)因为ccosB+(b-2a)cosC=0,

所以sinCcosB+(sinB-2sinA)cosC=0, 所以sinCcosB+sinBcosC=2sinAcosC, 所以sin(B+C)=2sinAcosC. 又因为A+B+C=π, 所以sinA=2sinAcosC.

又因为A∈(0,π),所以sinA≠0,

所以cosC=1

2.

又C∈(0,π),所以C=π

3. (2)由(1)知,C=π

3,

所以c2

=a2

+b2

-2abcosC=a2

+b2

-ab. 又c=2,所以4=a2

+b2

-ab.

又a2

+b2

≥2ab,当且仅当a=b时等号成立,

1

所以ab≤4.所以△ABC面积的最大值(S1△ABC)max=(1

2????sin??)

sinπ

max

=2×4×3=√3.

2.如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°.

(1)若∠AMB=60°,求BC;

(2)设∠DCM=θ,若MB=4MC,求tan θ.

解(1)由∠BMC=60°,∠AMB=60°,得∠CMD=60°.

在Rt△ABM中,MB=2AM=4;在Rt△CDM中,MC=2MD=2.

在△MBC中,由余弦定理,得BC2

=BM2

+MC2

-2BM·MC·cos∠BMC=12,BC=2√3. (2)因为∠DCM=θ,

所以∠ABM=60°-θ,0°<θ<60°.

在Rt△MCD中,MC=1

sin??; 在Rt△MAB中,MB=2

sin(60°-??), 由MB=4MC,得2sin(60°-θ)=sinθ,

所以√3cosθ-sinθ=sinθ, 即2sinθ=√3cosθ,

整理可得tanθ=√32.

2

3.已知向量m=(2acos x,sin x),n=(cos x,bcos x),函数f(x)=m·n-,函数f(x)在y轴上的截距为2,与y轴最近的最高点的坐标是(12,1). (1)求函数f(x)的解析式;

(2)将函数f(x)的图象向左平移φ(φ>0)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y=sin x的图象,求φ的最小值.

√3π

√32

解(1)f(x)=m·n-2=2acosx+bsinxcosx-2,

√32

√3,得2

√3√32

√3由f(0)=2a-=

a=2,

此时,f(x)=2cos2x+2sin2x,

√3??3??由f(x)≤√4+4=1,得b=1或b=-1,

2

当b=1时,f(x)=sin(2??+3),经检验(12,1)为最高点;

ππ

当b=-1时,f(x)=sin(2??+

2π3

),经检验(12,1)不是最高点.

π

故函数的解析式为f(x)=sin(2??+3).

π

(2)函数f(x)的图象向左平移φ个单位后得到函数y=sin2x+2φ+3的图象,横坐标伸长到原来的2倍后得到函数y=sinx+2φ+3的图象,

所以2φ+3=2kπ(k∈Z),φ=-6+kπ(k∈Z), 因为φ>0,所以φ的最小值为

5π6

π

π

π

π

.

4.函数f(x)=Asin(????+6)(A>0,ω>0)的最大值为2,它的最小正周期为2π.

3

π

(1)求函数f(x)的解析式;

(2)若g(x)=cos x·f(x),求g(x)在区间[-

π6

,]上的最大值和最小值.

4

π

解(1)由已知f(x)最小正周期为2π,

所以

??=2π,解得ω=1.

因为f(x)的最大值为2, 所以A=2,

所以f(x)的解析式为f(x)=2sin(??+6).

π

(2)因为f(x)=2sin(??+6)=2sinxcos6+2cosxsin6=√3sinx+cosx,

πππ

所以g(x)=cosx·f(x)=√3sinxcosx+cosx=2sin2x+π

1

2

√31+cos2??2

=sin(2??+6)+2.

π

π

π

π

2π3

因为-6≤x≤4,所以-6≤2x+6≤

, 于是,当2x+6=2,即x=6时,g(x)取得最大值2;当2x+6=-6,即x=-6时,g(x)取得最小值0. 5.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的一系列对应值如表:

πππ3πππ

x -4 0 ??0 ??6 ??40 ??2 3?? 40 y 1 1 2-1

4

(1)求f(x)的解析式;

(2)若在△ABC中,AC=2,BC=3,f(A)=-1

2

(A为锐角),求△ABC的面积.

解(1)由题中表格给出的信息可知,函数f(x)的周期为T=3π4

?(-π

4

)=π,

所以ω=2ππ

=2.

注意到sin(2×0+φ)=1,也即φ=π2

+2kπ(k∈Z), 由0<φ<π,所以φ=π

2.

所以函数的解析式为f(x)=sin(2??+π

2)=cos2x.

(2)∵f(A)=cos2A=-1π

2,且A为锐角,∴A=3. 在△ABC中,由正弦定理得,

????sin??=

????sin??, ∴sinB=????·sin??×

√32

????=

23

=

√33

, ∵BC>AC,∴B

∴sinC=sin(A+B)=sinAcosB+cosAsinB=√3√61√33√2+√32×

3

+2

×3

=6

,

∴S=1

1

3√2+√32+√3△ABC2·AC·BC·sinC=2×2×3×6

=

3√2

.

6.在△ABC中,角A,B,C所对边分别为a,b,c,C=π

4,b=4,△ABC的面积为6.(1)求c的值; (2)求cos(B-C)的值. 解(1)已知C=π

4,b=4,

5

通用版2020版高考数学大二轮复习 大题专项练习 分类汇编全集 文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1bple9b64j8c83h0epna2cg5h8inz6016bu_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top