6、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 解:(1)y?(2400?2000?x)?8?4?(2)由题意,得???x?22,即y??x?24x?3200. ?50?2522x?24x?3200?4800.整理,得x2?300x?20000?0. 25得x1?100,x2?200.要使百姓得到实惠,取x?200.所以,每台冰箱应降价200元. (
3
)
对
于
y??22x?24x?320025,当
x??24?150?2?2?????25?时,
150??y最大值?(2400?2000?150)?8?4???250?20?5000.
50??所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.
7.(山东菏泽)我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.
(1) 求一次至少买多少只,才能以最低价购买?
(2) 写出该专卖店当一次销售x(时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围; (3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少? 解:(1)设一次购买x只,才能以最低价购买,则有:0.1(x-10)=20-16,解这个方程得x=50; ?20x?13x?7x(0<x≤50)?1?答:一次至少买50只,才能以最低价购买. (2) y??[(20?13)?0.1(x?10)]??x2?8x(10<x<50).
10???16x?13x=3x(x≥50)(说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可) (3)将y??121 x?8x配方得y??(x?40)2?160,所以店主一次卖40只时可获得最高利润,最高利润为160元.
10108、(武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则
每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
【关键词】二次函数的应用 二次函数的极值问题
【答案】解:(1)y?(210?10x)(50?x?40)??10x?110x?2100(0?x≤15且x为整数); (2)y??10(x?5.5)?2402.5.
22a??10?0,?当x?5.5时,y有最大值2402.5.
且x为整数,当x?5时,50?x?55,y?2400(元),当x?6时,50?x?56,y?24000?x≤15,
(元)?当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.
(3)当y?2200时,?10x2?110x?2100?2200,解得:x1?1,x2?10.
?当x?1时,50?x?51,?当售价定为每件51或60元,当x?10时,50?x?60.每个月的利润为2200
元.当售价不低于51或60元,每个月的利润为2200元.
当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元). 9、(黄冈)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为: y1=
若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为
y2=(1)用x的代数式表示t为:t= 6﹣x ;当0<x≤4时,y2与x的函数关系为:
y2= 5x+80 ;当 4 <x< 6 时,y2=100;
(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少? 分析:( 1)由该公司的年产量为6千件,每年可在国内、国外市场上全部售完,可得国内销售量+国外销售量=6千件,即x+t=6,变形即为t=6﹣x; 根据平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系及t=6﹣x即可求出y2与x的函数关系:当0<x≤4时,y2=5x+80;当4≤x<6时,y2=100; (2)根据总利润=国内销售的利润+国外销售的利润,结合函数解析式,分三种情况讨论:①0<x≤2;②2<x≤4;③4<x<6; (3)先利用配方法将各解析式写成顶点式,再根据二次函数的性质,求出三种情况下的最大值,再比较即可. 解答: 解:(1)由题意,得x+t=6,∴t=6﹣x;∵,∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,此时y2与x的函数关系为:y2=﹣5(6﹣x)+110=5x+80; 当4≤x<6时,0≤6﹣x<2,即0≤t<2,此时y2=100.故答案为6﹣x;5x+80;4,6; (2)分三种情况:①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480; ②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480; ③当4<x<6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600; 综上可知,w=; (3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=600; 当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4时,w最大=640; 当4<x<6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6时,w<640; ∴x=4时,w最大=640.故该公司每年国内、国外的销售量各为4千件、2千件,可使 公司每年的总利润最大,最大值为64万元. 10、(鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系. (1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少? 考点:二次函数的应用. 分析:(1)利用待定系数法求得y与x之间的一次函数关系式; (2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.解答:解:(1)由题意,可设y=kx+b, 把(5,30000),(6,20000)代入得:
,解得:
,
所以y与x之间的关系式为:y=﹣10000x+80000; (2)设利润为W,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32) =﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元. 答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元. 11、(咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元? (2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元,那么政府为他承担的总差价最少为多少元? 分析: (1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价; (2)由利润=销售价﹣成本价,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润; (3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值. 解答: 解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600,即政府这个月为他承担的总差价为600元. (2)依题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000 ∵a=﹣10<0,∴当x=30时,w有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000. (3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下, ∴结合图象可知:当20≤x≤40时,w≥3000.,又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000. ∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500. 即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.
12、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y?kx?b,且x?65时,y?55;x?75时,y?45. (1)求一次函数y?kx?b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
?65k?b?55,解:(1)根据题意得?解得k??1,b?120.所求一次函数的表达式为y??x?120.
75k?b?45.?2(2)W?(x?60)(?x?120) ??x?180x?7200 ??(x?90)?900,
2抛物线的开口向下,?当x?90时,W随x的增大而增大,而60≤x≤87,
?当x?87时,W??(87?90)2?900?891.
?当销售单价定为87元时,商场可获得最大利润,最大利润是891元.
22(3)由W?500,得500??x?180x?7200,整理得,x?180x?7700?0,解得,x1?70,x2?110.
由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而60≤x≤87,所以,销售单价x的范围是70≤x≤87.
13、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。 (1)请建立销售价格y(元)与周次x之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为z??(x?8)?12, 1≤ x ≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少? )
182?20?2(x?1)?2x?18(1?x?6)(x为整数)......(2分) 解:(1)y??
30 (6?x?11)(x为整数)......(4分)?(2)设利润为w
112?2y?z?20?2(x?1)?(x?8)?12?x?14(1?x?6)(x为整数)......(6分)??88w??
11?y?z?30?(x?8)2?12?(x?8)2?18(6?x?11)(x为整数)......(8分)?88?11w?x2?14 当x?5 时,w最大=17(元)....(9分)88111w?(x?8)2?18 当x?11 时,w最大=?9?18=19(元)....(10分)
8881综上知:在第11周进货并售出后,所获利润最大且为每件19元…(10分
814.(贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式。
(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x
相关推荐: