状态转移图为:
λ01···n-1λnλn+1···N-1λNμμμμ列出状态概率的稳态方程:
???P1???P0? ???Pn?1???Pn?1?(???)?Pn,???P???PNN?1?n?N?1
ρ=λ/μ
?P0??P0??P2?P1??2P0?P1??Pk??kP0?PN??NP0
由:P0+P1+〃〃〃+PN=1 有:??kP0?1
k?0N则:
P0?1??k?0N?k1??1??N?1
所以:(1??N?1)P0?1??
P0????NP0?1?? P0???PN?1?? 即: ?(1?PN)?1?P0 亦即:?(1?PN)??(1?P0) 其含义是:系统在非饱和状态下的输入率 等于 系统在非空闲状态下的服务率 即:有效到达率 等于 有效服务率 [证毕]
5. 三个不可修复子系统串并构成如下图所示的系统。各子系统的平均寿命均为
T,求下列两种情况下总系统的平均寿命。 (20分) (1) R2和R3互为热备份,即同时运行。
(2) R3是R2的冷备份,即当R2发生故障时R3才启动运行。
R1R2R3
(1) 系统可靠度为:
R(t)?R1(t){1?[1?R2(t)][(1?R3(t)]}?R1(t)[R2(t)?R3(t)?R2(t)R3(t)]?e??t 1 T[解]:依题意:R1、R2和R3的可靠度均为Ri(t)?e??t,其中,??[2e??t?e?2?t]
?2e?2?t?e?3?t
所以,系统的平均寿命为:
T1??R(t)dt??[2e?2?t?e?3?t]dt00??11?3?t???[e?2?t]??[e]00?3?1112???T?T?T?3?33
(2) 令(s, r)表示子系统R2和R3的状态 用0 表示子系统正常 用1 表示子系统故障
(s, r) = 00:R2正常,R3未启动
(s, r) = 01:R2正常,R3已失效----------这是不可能事件 (s, r) = 10:R2失效,R3正常工作
(s, r) = 11:R2失效,R3失效-------------并联系统失效
状态转移图为:
αα001011
状态方程为:
'P00(t)???P00(t)'P10(t)??P00(t)??P10(t) 'P11(t)??P10(t)
归一化条件为:P00(t)?P10(t)?P11(t)?1 初始化条件为:P00(0)?1,P10(0)?0,P11(0)?0
求解状态方程:
P00(t)?e??tP10(t)?e??t[??e??te?tdt?c]
??te??t?ce??t 带入初始条件后,解得:c = 0,所以:P10(t)??te??t
??t??t P(t)?1?P(t)?P(t)?1?e??te110010
R2和R3构成的并联子系统的可靠度为:
R23(t)?P00(t)?P10(t)
总系统的可靠度为:
R(t)?R1(t)?R23(t)?R1(t)[P00(t)?P10(t)]?e??t[e??t??te??t]?e?2?t??te?2?t
所以,系统的平均寿命为:
T2??R(t)dt??[e?2?t??te?2?t]dt00??1?2?t?t1??2?t[e]0?[?e?2?t]??edt 0?02?221133????T2?4?4?4??[解毕]
相关推荐: