第一范文网 - 专业文章范例文档资料分享平台

(完整word)新湘教版八年级下册数学复习资料及训练 - 图文 

来源:用户分享 时间:2025/5/29 3:28:08 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

期中数学复习 直角三角形题型训练(一) 1、角平分线: 角平分线上的点到这个角的两边的距离相等 如图,∵AD是∠BAC的平分线(或∠1=∠2), PE⊥AC,PF⊥AB ∴PE=PF ·如图,在ΔABC中,∠C=90°∠ABC的平分线BD交AC于点D, 若BD=10厘米,BC=8厘米,DC=6厘米,则点D到直线AB的距 离是________厘米。 ·如图:在△ABC中,,O是∠ABC与∠ACB的平分线的交点。 求证:点O在∠A的平分线上。 2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点 的距离相等 。 如图,∵CD是线段AB的垂直平分线, ∴PA=PB ·已知:如图,求作点P,使点P到A、B两点的距离相等, DABAAOBCFA12EPBDCCPEDB·如图,△ABC中,DE是AB的垂直平分线,AE=4cm,△ABC的周长是18 cm,则△BDC的周长是__。 CEM A · 且P到∠MON两边的距离也相等. O 3、勾股定理及其逆定理 ①勾股定理:直角三角形两直角边a、b的平方和等 222于斜边c的平方,即a?b?c。 BaB · N cACb222222c?a?ba?c?bb?c?a求斜边,则;求直角边,则或。 ·如图是拉线电线杆的示意图。已知CD⊥AB,∠CAD=60°,则拉线AC的长是________m。 , ·若一个直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是______。 222a?b?c②逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 。 222a?bc分别计算“”和“”,相等就是Rt?,不相等就不是Rt?。 ·在Rt△ABC中,若AC=2,BC=7,AB=3,则下列结论中正确的是( )。 A.∠C=90° B.∠B=90° C.△ABC是锐角三角形 D.△ABC是钝角三角形 ·若一个三角形三边满足(a?b)2?c2?2ab,则这个三角形是 三角形. ·一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13, ?B?90?,木板的面积为 . A B D C ·某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,?已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?

直角三角形题型训练(二) 4、直角三角形全等 方法:SAS、ASA、SSS、AAS、HL。 ·如图,在ΔABC中,D为BC的中点,DE?BC交∠BAC的平分线AE于点E,EF?AB于点F,EG?AC的延长线于点G。 A求证:BF=CG。 5、其它性质 ①直角三角形斜边上的中线等于斜边上的一半。 如图,在Rt?ABC中,∵CD是斜边AB的中线, ∴CD?BDCAFBDCGE1AB。 2·直角三角形斜边长20cm,则此斜边上的中线为 . ②在直角三角形中,如果一个锐角等于30°那么它所对的直角 边等于斜边的一半。 如图,在Rt?ABC中,∵∠A=30°,∴BC?B1AB。 2CA·在Rt△ABC中,∠C=90°,∠A=30°,则下列结论中正确的是( )。 A.AB=2BC B.AB=2AC C.AC2+AB2=BC2 D.AC2+BC2=AB2 ③在直角三角形中,如果一条直角边等于斜边的一半,那么 这条直角边所对的角等于30°。 如图,在Rt?ABC中,∵BC?B1AB,∴∠A=30°。 2CA·等腰三角形一腰上的高等于腰长的一半,则顶角的度数是 。 ④三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半。 如图,在⊿ABC中,∵E是AB的中点,F是AC的中点, A∴EF是⊿ABC的中位线 ∴EF‖BC,EF?1BC2 EBFC·如图,□ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为 ·在□ABCD中,对角线AC、BD相交于点O,如果AC=14,的取值范围是__________。 BD=8,AB=x,那么x 四边形题型训练(一) 1、 多边形内角和公式:n边形的内角和=(n-2)·180o 求n边形的方法:n?内角和?2 180?·一个多边形的内角和为12600,它是 边形。 ·一个n边形的n – 1个内角和为23500,它是 边形,另一个内角是 。 2、中心对称:(在直角坐标系中即关于原点对称,其横、纵坐标都互为相反数) 成中心对称的两个图形中,对应点得连线经过对称中心,且被对称中心平分 会画与某某图形成中心对称图形 会辨别图形、实物、汉字、英文字母、扑克等是否中心对称图形 ·下列几张扑克牌中,中心对称图形的有________张 ·图6中4张扑克牌如图(1)所示放在桌面上,小 敏把其中一张旋转180°后得到如图(2)所示,那 么她所旋转的牌从左数起是( ) A.第一张 B.第二张 C.第三张 D.第四张 · 在字母C、H、V、M、S中是中心对称图形的 是 ·下列既是轴对称图形又是中心对称图形的是( ) A: 等边三角形 B : 平行四边形 C: 等腰梯形 D : 矩形 ·下列图案是中心对称图形,不是轴对称图形的是 ( ).

四边形题型训练(一) 3、特殊四边形的判定 ①平行四边形: 方法1两组对边分别平行的四边形是平行四边形 如图,∵ AB‖CD,AD‖BC,∴四边形ABCD是平行四边形 B方法2 两组对边分别相等的四边形是平行四边形 如图,∵ AB=CD,AD=BC,∴四边形ABCD是平行四边形 方法3两组对角分别相等的四边形是平行四边形 如图,∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形 方法4一组对边平行相等的四边形是平行四边形 如图,∵ AB‖CD,AB=CD,∴四边形ABCD是平行四边形 或∵AD‖BC,AD=BC,∴四边形ABCD是平行四边形 CADAMEOCFNAoCBDB方法5 对角线互相平分的四边形是平行四边形 如图,∵ OA=OC,OB=OD,∴四边形ABCD是平行四边形 ·如图,在□ABCD中,点E是AD的中点,BE的延长线与CD的延长线交于点F。试连结BD、AF,判断四边形ABDF的形状,并证明你的结论. ②矩形: 方法1 有三个角是直角的四边形是矩形 方法2 对角线相等的平行四边形是矩形 交∠ACB内角平分线CE于E. (1)当点O运动到何处时,四边形AECF是矩形?并证明你的结论; (2)猜想△ABC是何形状三角形时,矩形AECF会是正方形?并证明你的结论。 ·如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F, ③菱形: 方法1 四边都相等的四边形是菱形 方法2 对角线互相垂直的平行四边形是菱形 ·已知矩形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F. 求证:四边形AFCE为菱形 A E D ④正方形 方法1 有一个角是直角的菱形是正方形 方法2有一组邻边相等的矩形是正方形 ·正方形具有而菱形不一定具有的性质是( ) A: 对角线互相平分 B对角线相等 C:对角线平分一组对角 D:对角线互相垂直 ·顺次连接对角线相等的四边形各边中点所得的四边形是 ·如图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角的度数应B F C O 为( ) A.60°B.30° C.45° D.90° ·下列说法错误的是( ) A对角线互相垂直平分的四边形是菱形 B对角线平分且相等的四边形是矩形 C:对角线互相垂直且相等的四边形是正方形 D对角线互相平分的四边形是平行四边形。 ·如图,在正方形ABCD的外侧,作等边△ADE, 则∠AEB=_______. ·如图为四边形、平行四边形、矩形、正方形菱形、梯形集合示意图,请将字母所代表的图形分别填入下表: 4、面积公式 ①S平行四边形=底×高 ②S矩形=长×宽 ③S正方形=边长×边长 ④S菱形=底×高=×(对角线的积),即:S=(a×b)÷2 ·矩形ABCD的对角线相交于O,AB=6,AC=10,则面积为 ·菱形的周长为20,一条对角线长为6,则其面积为

图形与坐标题型训练 1、点的对称性: 关于x轴对称的点,横坐标相反,纵坐标相等; 关于y轴对称的点,横坐标相等,纵坐标相反; 关于原点对称的点,横、纵坐标都相反。 若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b)。 解题方法:相等时用“=”连结,相反时两式相加=0。 ·已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:① A、B关于x轴对称;② A、B关于y轴对称;③ A、B关于原点对称;④A、B之间的距离为4。其中正确的有 个。 ·已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m= ,n= 。 ·已知点P(3,-1)关于y轴对称点Q的坐标是(a+b,1-b),则a的值是 。 2、坐标平移: 左右平移:横坐标右加左减,纵坐标不变; 上下平移:横坐标不变,纵坐标上加下减。 例如:若直角坐标系内一点P(a,b)向左平移h个单位,坐标变为P(a-h,b),向右平移h个单位,坐标变为P(a+h,b);向上平移h个单位,坐标变为P(a,b+h),向下平移h个单位,坐标变为P(a,b-h).如:点A(2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A(7,1). ·将四边形ABCD先向左平移3个单位,再想上平移2个单位,那么点A(3,-2)的对应点A?的坐标是_____. ·已知点A(m,n),把它向左平移3个单位后与点B(4,-3)关于y轴对称,则m=__,n=__. ·在平面直角坐标系中,点M的坐标为(b,-2b),将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,则b的取值范围是___. 3、在平面直角坐标系中会画轴对称、平移后的图形,并写出图形顶点的坐标。 ·在平面直角坐标系中描出点A(3,5)、B(1,1)、C(5,3)的位置,连成△ABC. ①作出△ABC关于x轴对称的ΔA1B1C1, 并写出三个顶点的坐标; ②作出△ABC关于原点O成中心对称 的ΔA2B2C2,并写出三个顶点的坐标; ③将△ABC向左平移6个单位长度,画出平 移后的ΔA3B3C3,并写出三个顶点的坐标; ④求出四边形BB1B2B3的面积。 4、会建平面直角坐标系,用坐标表示相关位置 b·如图所示的象棋盘上,若帅相位○位于点(1,-2)上,○是 . 5、平面上的点与 是一 一对应的。 ·若点P到X轴的距离为5,到Y轴的距离为3,且点P为 。 ·如图,在平面直角坐标系中,□ABCD的顶点D O (A) C 于点(3,-2)上,则炮○的坐标在第四象限,则点P的坐标B (0,0),(5,0)(2,3),则顶点C的坐 炮A、B、D的坐标分别是标是 帅相

图3一次函数题型训练(一) 1、函数自变量的取值: 整式取全体实数,分式则分母不为0,二次根式则根号下的数?0. ·函数y=1的自变量x的取值范围是 x+1 函数y=2x-1的自变量x的取值范围是 ·函数y=-3x+5的自变量x的取值范围是 函数y=2x+1的自变量x的取值范围是 x-1·下列不表示函数图象的是 ( ) 2、一次函数y=kx+b(k≠0)的图象是一条直线(含正比例函数y=kx). ·下列函数解析式c=2pr,y=2x-1,y=-3x,y=x+1中是一次函数的 有 ①求k的取值: y随x增大而增大则k>0;y随x增大而减小则k<0.再解出不等式。 ·若函数y=(k+5)x ·若正比例函数y=(m-1)xm ·若函数y=(2m-1)x ②求函数图像经过的象限:在y=kx+b中,k>0过一、三象限;k<0过二、四象限。b>0向上移;b<0向下移。可得出。 ·一次函数y??5x?7的图象经过第 象限 ·若一次函数y=2x+b的图象不经过第二象限则b的取值范围是 ·一次函数y=2mx+m-2的图象经过原点,则m的值为 ③一次函数y=kx+b(k≠0)的图象平移的方法: b的值加减即可(加是向上移,减则下移)。 ·直线y=- 3m-222a-1是正比例函数,k ,a= 。 -3中,y随x的增大而减小,则m的值是 。 +3是一次函数,则m= 且y随x的增大而 2x+2是由 向 平移2个单位得到的。 3·将直线y=3x+1向下平移3个单位得到的函数解析式是 ④同一平面内两直线的位置关系:(例如1: 若ly?k1x?b1 l2:y?k2x?b2。 ) k1?k2且b1?b2,则l1//l2; 若k1?k2??1,则l1?l2·直线y=-8+ 1x和y=(k-1)x+5平行,则k= 2·直线y=-2x+1与y= ⑤坐标轴上点的特征: 1x+5的位置关系式 。 2x轴上的点纵坐标为0即(a,0);y轴上的点横坐标为0.即(0,b)。 ·直线y=-3+ 1x与x轴的交点坐标为 ,与y轴的交点坐标为 。 2b2⑥面积公式: 当b?0时,一次函数y?kx?b的图象与两条坐标轴围成的直角三角形的面积 s= 2k·直线y=-3x+2 经过第 象限,它与两坐标轴围成的三角形面积是 。 ·已知一次函数y=3x+b的图象与坐标轴围成的三角形面积等于4,则一次函数的解析式为 。

一次函数题型训练(二) ⑦用待定系数法求一次函数的解析式: 先设一次函数的表达式为y=kx+b,再将已知的两组x、y值代人列出二元一次方程组,求出k、b的值,再代回即可。 ·已知正比例函数的图象经过点P(2,5),求它的表达式。 ·已知一次函数的图象经过点(0,2)和(1,—1),求这个一次函数的表达式。 ·已知直线l1经过点A(—1,0)与点B(2,3),另一条直线l2经过点B,且与x轴交于点P(m,0)。 ① 求直线l1的表达式; ②若ΔAPB的面积为3,求m的值。 3、一次函数与方程的关系 任何一个一元一次方程kx+b=0的解,就是一次函数y=kx+b的图像与轴交点的横坐标;一次函数y=kx+b的图像上任意一点的坐标都是二元一次方程kx-y+b=0的一个解. ·已知一次函数y=ax+b(a、b为常数,a?0),x与y的部分对应值如下表: x y —2 6 —1 4 0 2 1 0 2 —2 3 —4 那么方程ax+b=0的解是 ·把方程x?2y??3化成一次函数的形式是________________。 ?x?a·已知二元一次方程3x?y?1的一个解是?,那么点P(a,b)一定不在( )。 y?b?A.第一、三象限 B.第二、四象限 C.第二象限 D.坐标轴上 ·二元一次方程组??2x?y?4的解,即为函数__________和函数__________的图象交点的坐标。 ?2x?3y?12数据的频数分布题型训练 频数1、频数与频率:频率=总数,各小组的频数之和等于总数,各小组的频率之和等于1。 ·某中学八年级有500名学生参加生物、地理会考考试成绩在80分至100分之间的共有180人,则这个分数段的频率是_______。 ·对150个数据进行整理得到频数分布直方图,测得所有表示频数的长方形的高之和为33cm,其中最大的长方形的为11cm,则这个最大的长方形的高所表示的频数为 . 2、频数分布直方图:会读图,计算并将直方图补充完整。 某学校为丰富课间自由活动的内容,随机选取本校100名学生进行调查, 调查内容是“你最喜欢的自由活动项目是什么”,整理收集到的数据,?绘制成直方图,如图所示. ①喜欢“踢毽子”的学生有 人,并在图中将“踢毽子”部分的条图形补充完整. ②喜欢“跳绳”的频率是 ③该校共有800名学生,估计喜欢“跳绳”的学生有 人.

(完整word)新湘教版八年级下册数学复习资料及训练 - 图文 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1dtdr1ax3i38gut0xsx29kcek7hm3l013xg_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top