第一范文网 - 专业文章范例文档资料分享平台

专题1-极值点偏移问题利器极值点偏移判定定理-玩转压轴题,突破140分之高三数学解答题高端精品版含解析

来源:用户分享 时间:2025/6/7 9:43:27 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

一、极值点偏移的判定定理

对于可导函数y?f(x),在区间(a,b)上只有一个极大(小)值点x0,方程f(x)?0的解分别为x1,x2,且a?x1?x2?b,

(1)若f(x1)?f(2x0?x2),则极(小)大值点x0右(左)偏;

(2)若f(x1)?f(2x0?x2),则极(小)大值点x0右(左)偏.

证明:(1)因为对于可导函数y?f(x),在区间(a,b)上只有一个极大(小)值点x0,则函数f(x)的单调递增(减)区间为(a,x0),单调递减(增)区间为(x0,b),由于有x1?x0,且2x0?x2?x0,又f(x1)?f(2x0?x2),故x1?(?)2x0?x2,a?x1?x2?b,所以

x1?x2?(?)x0,即函数y?f(x)在区间(x1,x2)上2x1?x2?(?)x0,即函数y?f(x)在区间(x1,x2)上2x1?x2?(?)x0,即函数极(小)大值点x0右(左)偏; 2(2)证明略.

左快右慢(极值点左偏?m?x?x2x1?x2) 左慢右快(极值点右偏?m?1) 22

左快右慢(极值点左偏?m?x1?x2x?x2) 左慢右快(极值点右偏?m?1) 22二、运用判定定理判定极值点偏移的方法 1、方法概述:

(1)求出函数f(x)的极值点x0;

(2)构造一元差函数F(x)?f(x0?x)?f(x0?x); (3)确定函数F(x)的单调性;

(4)结合F(0)?0,判断F(x)的符号,从而确定f(x0?x)、f(x0?x)的大小关系. 口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随. 2、抽化模型

答题模板:若已知函数f(x)满足f(x1)?f(x2),x0为函数f(x)的极值点,求证:

x1?x2?2x0.

(1)讨论函数f(x)的单调性并求出f(x)的极值点x0;

假设此处f(x)在(??,x0)上单调递减,在(x0,??)上单调递增.(2)构造F(x)?f(x0?x)?f(x0?x);

注:此处根据题意需要还可以构造成F(x)?f(x)?f(2x0?x)的形式.

[KS5UKS5U][KS5UKS5U.KS5U

(3)通过求导F'(x)讨论F(x)的单调性,判断出F(x)在某段区间上的正负,并得出

f(x0?x)与f(x0?x)的大小关系;

假设此处F(x)在(0,??)上单调递增,那么我们便可得出

F(x)?F(x0)?f(x0)?f(x0)?0,从而得到:x?x0时,f(x0?x)?f(x0?x).

(4)不妨设x1?x0?x2,通过f(x)的单调性,f(x1)?f(x2),f(x0?x)与f(x0?x)的大小关系得出结论;

接上述情况,由于x?x0时,f(x0?x)?f(x0?x)且x1?x0?x2,f(x1)?f(x2),故f(x1)?f(x2)?f[x0?(x2?x0)]?f[x0?(x2?x0)]?f(2x0?x2),又因为x1?x0,

从而得到x1?2x0?x2,从而x1?x2?2x0得2x0?x2?x0且f(x)在(??,x0)上单调递减,证.

(5)若要证明f'(x1?x2x?x2x?x2)?0,还需进一步讨论1与x0的大小,得出1所在的222x1?x2?x0,由于f(x)在(??,x0)上单2单调区间,从而得出该处函数导数值的正负,从而结论得证.

此处只需继续证明:因为x1?x2?2x0,故调递减,故f'(【说明】

(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;

(2)此类题目若试题难度较低,会分解为三问,前两问分别求f(x)的单调性、极值点,证明f(x0?x)与f(x0?x)(或f(x)与f(2x0?x))的大小关系;若试题难度较大,则直接给出形如x1?x2?2x0或f'(小问分解为三问逐步解题.

[KS5UKS5U.KS5Ux1?x2)?0. 2x1?x2)?0的结论,让你给予证明,此时自己应主动把该2

三、对点详析,利器显锋芒 ★已知函数f(x)?xe(x?R). (1)求函数f(x)的单调区间和极值;

(2)若x1?x2,且f(x1)?f(x2),证明:x1?x2?2.

?x

∵x2?1,∴2?x2?1,f(x)在(??,1)上单调递增,∴x1?2?x2,∴x1?x2?2. ★函数f(x)?x?证明:x1?x2?2.

4431x与直线y?a(a??)交于A(x1,a)、B(x2,a)两点. 33

2?lnx,若x1?x2,且f(x1)?f(x2),证明:x1?x2?4. x2【解析】由函数f(x)??lnx单调性可知:若f(x1)?f(x2),则必有x1?2?x2,。

x★已知函数f(x)?所以4?x1?2, 而f(x1)?f(4?x1)?22?lnx1??ln(4?x1), x14?x1

专题1-极值点偏移问题利器极值点偏移判定定理-玩转压轴题,突破140分之高三数学解答题高端精品版含解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1emyf1erg90vngk58yua7wp9920csk00zsy_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top