(Ⅰ)若曲线y?f?x?在点?2,f?2??处切线的倾斜角为
?4,求a的值; (Ⅱ)已知导函数f'?x?在区间?1,e?上存在零点,证明:当x??1,e?时,f?x???e2. 【解析】 (Ⅰ)f?x??alnx?x2??a?2?x,故f'?x??ax?2x??a?2?, f'?2??a2?4??a?2??tan?4?1,故a?2. (Ⅱ) f'?x??ax?2x??a?2???x?1??2x?a?x?0,即a?2x??2,e?,存在唯一零点,设零点为x,故f'?xa00??x?2x0??a?2??0,即a?2x0, 0f?x?在?1,x0?上单调递减,在?x0,e?上单调递增,
故f?x?2min?f?x0??alnx0?x0??a?2?x0?2x20lnx0?x0??2x0?2?x0
?2x20lnx0?x0?2x0,
设g?x??2xlnx?x2?2x,则g'?x??2lnx?2x,
设h?x??g'?x??2lnx?2x,则h'?x??2x?2?0,h?x?单调递减, h?1??g'?1???2,故g'?x??2lnx?2x?0恒成立,故g?x?单调递减. g?x?min?g?e???e2,故当x??1,e?时,f?x???e2.
(2020东城一模)已知函数f?x??lnx?ax?1. (1)若曲线y?f?x?存在斜率为-1的切线,求实数a的取值范围;
17 / 31
(2)求f?x?的单调区间;
(3)设函数g?x??x?a,求证:当?1?a?0时, g?x?在?1,???上存在极小值. lnxa1ax?a?1得f'?x???2?2(x?0). xxxx【解析】(1)由f?x??lnx?由已知曲线y?f?x?存在斜率为-1的切线,所以f'?x???1存在大于零的实数根,
即x2?x?a?0存在大于零的实数根,因为y?x?x?a在x?0时单调递增, 所以实数a的取值范围???,0?. (2)由f'?x??2x?a,x?0,a?R可得 2x当a?0时, f'?x??0,所以函数f?x?的增区间为?0,???; 当a?0时,若x???a,???, f'?x??0,若x??0,?a?, f'?x??0, 所以此时函数f?x?的增区间为??a,???,减区间为?0,?a?.
alnx??1f?x?x?ax(3)由g?x??及题设得g'?x??, ?22lnx?lnx??lnx?由?1?a?0可得0??a?1,由(2)可知函数f?x?在??a,???上递增, 所以f?1???a?1?0,取x?e,显然e?1,
f?e??lne?aa?1???0,所以存在x0??1,e?满足f?x0??0,即存在x0??1,e?满足g'?x0??0,所ee以g?x?, g'?x?在区间(1,+∞)上情况如下:
x (1,x0)+?) x0 (x0,
18 / 31
g'?x? - 0 + g?x? ↘ 极小 ↗
相关推荐: