?2?所以9?xn????3?n?1?9?x1?.
n?1?2?又x1?1,故xn?9?8????3?
.
3313.1.证明QSn?2an?2n,?Sn?1?2an?1?2n?(1n?2), ………2分 作差得a3n?2an?1?2n(n?2),变形得a11n-2n?(2an?1?2n)(n?2) ?{a1n?2n}为首项为1,公比为2等比数列 ………4分 ?an-11n?2+2n,n?N* ………6分 2Qa1*n?2n-1+2n,n?N代入S3n?2an?2n,得Sn1n?2?2n, ………8分 QSn-Sn-1?2n?12n-(2n?1?12n?1)=2n?1+12n?0,12n?{Sn}为递增数列,令bn=S=2n
n2?1b2n2nQn=22n?1=(2n-1)(2n+1) ………10分 ?b?2n2n-111n(2n-1)(2n?2)(?2n-1)(2n-1?1)?2n-1-1?2n-1(n?2) 当n?1时,T224141=b1=3,当n?2时,T2=b1+b2=3+15=15当n?3时,T241111n=b1+b2+L+bn?3+15+3?7+7-15+L,………13分
=1911915-2n?1?1519QTm38S?15??1,?存在?min=1?存在正整数?=1n345,2m,n?N*,不等式Tm-?Sn?0恒成立 ………15分
16
对任意
14.(Ⅰ)证明:①当n?1时显然成立;
?②假设当n?k(k?N)时不等式成立,即0?ak?1,
那么当n?k?1时,
11111?(ak?)?g2akg?1,所以0?ak?1?1, ak?12ak2ak即n?k?1时不等式也成立.
?综合①②可知,0?an?1对任意n?N成立.--------------------------------5分
(Ⅱ)
an?12?2?1,即an?1?an,所以数列?an?为递增数列。------------7分 anan?1又
?1?1111111???(an?)?(?an),易知??an?为递减数列, anan?1an2an2an?an??11?所以???也为递减数列,
aan?1??n所以当n?2时,
11111549??(?a2)?(?)?-------------------10分 anan?12a224540119(an?an?1)2)?(an?1?an)------12分 所以当n?2时,bn??(an?1?an)(?anan?140anan?1当n?1时,Tn?T1?b1?93?,成立; 401099?[(a3?a2)?(a4?a3)?L?(an?1?an)] 4040当n?2时,Tn?b1?b2?L?bn?
?9999994273?(an?1?a2)??(1?a2)??(1?)?? 4040404040405100103-----------------------------------------------------------------15分10
综上,对任意正整数n,Tn?
15.(1)当n?2时,2S2?3a2?1,解得a2?2; 当n?3时,2Sn?(n?1)an?1,2Sn?1?nan?1?1, 以上两式相减,得2an?(n?1)an?nan?1,∴∴an?ann?, an?1n?1anan?1a3nn?13?…?a2??…?2?n, an?1an?2a2n?1n?22 17
?3?,n?1,∴an??2
??n,n?2.?4,n?1,?125?(2)bn? ??12(an?1)?,n?2,2??(n?1)当n?1时,T1?b1?当n?2时,bn?∴Tn?∴Tn?433?; 25501111???,
(n?1)2n(n?1)nn?1411111133133?(?)?(?)?…?(?)???, 252334nn?150n?15033(n?N*). 50
18
相关推荐: