电大【经济数学基础】形成性考核册参考答案 《经济数学基础》形成性考核册(一)
一、填空题 1.limx?sinxx?0x?___________________.答案:0
2.设
f(x)???x2?1,x?0?,在x?0处连续,则k?________.?k,x?0答案1 3.曲线y?x+1在(1,1)的切线方程是 . 答
案:
y?12x?32 4.
设
函
数
f(x?1)?x2?2x?5,则
f?(x)?____________.答案2x
5.设
f(x)?xsinx,则f??(π2)?__________.答案:
??2
二、单项选择题
1. 当x???时,下列变量为无穷小量的是( D ) 2A.
ln(1?x)?1 B.
xx?1 C.
ex2 D.
sinxx 2. 下列极限计算正确的是( B )
A.limxx?0x?1 B.x1xlim?0?x?1 C.limx?0xsinx?1 D.limsinxx??x?1 3. 设y?lg2x,则dy?( B ).
A.
12xdx B.1xln10dx C.ln10xdx D.1xdx 4. 若函数f (x)在点x0处可导,则( B )是错误的. A.函数f (x)在点x0处有定义 B.limx?xf(x)?A,
0但A?f(x0)
C.函数f (x)在点x0处连续 D.函数f (x)在点x0处可微 5.若
f(1x)?x,则f?(x)?( B ).
A.
1x2 B.?1x2 C.
1x D.?1x 三、解答题
1.计算极限
(1)limx2?3x?2x?1x2?1 解:原式=lim(x?1)(x?2)x?21?21x?1(x?1)(x?1)=limx?1x?1=
1?1??2 (2)limx2?5x?6x?2x2?6x?8
解:原式=lim(x?2)(x?3)x?32?31x?2(x?2)(x?4)=limx?2x?4?2?4?2 (3)lim1?x?1x?0x
解:
原式
=
lim(1?x?1)(1?x?1)=
1?x?1
x?0x(1?x?1)limx?0x(1?x?1)=
lim11x?0?1?x?1=?2 (4)lim2x2?3x?5
x??3x2?2x?4 2?35解:原式=limx?x2?2?0?0x??3?2?2 ?43?0?03xx2(5)limsin3xx?0sin5x sin3xsin3解:原式=lim3xlimx0sin5x?35?35?x?03xx??3?1?3 5xlimsin5x515x?05xx2(6)lim?4x?2sin(x?2)
解:原式=lim(x?2)(x?2)x?2sin(x?2)?limx?2(x?2)?limx?2x?2sin(x?2)?4?1?4
1
??xsin1f(x)??x?b,x?02.设函数
?a,x?0,
??sinx?xx?0问:(1)当a,b为何值时,
f(x)在x?0处极限存在? (2)当a,b为何值时,f(x)在x?0处连续.
解:(1)因为
f(x)在x?0处有极限存在,则有
xlim?0?f(x)?xlim?0?f(x) 又 1xlim?0?f(x)?xlim?0?(xsinx?b)?b sinxxlim?0?f(x)?xlim?0?x?1 即
b?1
所以当a为实数、b?1时,f(x)在x?0处极限存在.
(2)因为f(x)在x?0处连续,则有
xlim?0?f(x)?xlim?0?f(x)?f(0) 又
f(0)?a,结合(1)可知a?b?1 所以当a?b?1时,f(x)在x?0处连续.
3.计算下列函数的导数或微分: (1)
y?x2?2x?log2x?22,求y?
解:y??2x?2xln2?1xln2
(2)y?ax?bcx?d,求y?
解:y??(ax?b)?(cx?d)?(ax?b)(cx?d)?(cx?d)2
=a(cx?d)?(ax?b)cad?bc(cx?d)2 =
(cx?d)2
(3)
y?13x?5,求
y?
?1解:y??[(3x?5)2]???1(3x?5)?12?1(3x?5)???3(3x?5)?3222 (4)
y?x?xex,求y?
1解:y??(x)??(xe)??1x?12x2xx2?e?xe
(5)
y?eaxsinbx,求dy
解:y??(eax)?sinbx?eax(sinbx)??eax(ax)?sinbx?eaxcosbx(bx)?
=aeaxsinbx?beaxcosbx
dy?y?dx?(aeaxsinbx?beaxcosbx)dx
1(6)
y?ex?xx,求dy
11313解:y??(ex1x)??(x2)??ex(1)??3x2?1??e3x2x2?2x2
1
dy?y?dx?(?ex31x2?2x2)dx
(7)
y?cosx?e?x2,求dy
解
:
y??(x)??(e?x2)???sx(x)??e?x2(?x2)??c?sx2x?2xe?x2(8)y?sinnx?sinnx,求y?
解
:
y??[x)n]??(nx)??n(x)n?1(x)??cnx((nx)??n(sinx)n?1cosx?ncosnx
(9)y?ln(x?1?x2),求y?
解
:
1y??1?x2)??1?((1?x2)2x?1?x2(x?1x?1?x2(1)?)
=
11x?1?x2(1?122?11x?1?x212(1?x)?2x)?x?1?x2?1?x2?1?x2
3(10)
y?2cot1x?1?x2?2xx,求
y?
2
i
解:
1y??(2sx)??(x?112)??(x6)??(2)??2s1xl2(135)??1x?2?1x?6ix26?0 ?sin12xln2(1?32cosx)(11x)??2x?1?566xsin1?2xln21?32?56x2cosx?2x?16x
4.下列各方程中y是x的隐函数,试求y?或dy
(1)x2?y2?xy?3x?1,求dy
解:方程两边同时对x求导得: (x2)??(y2)??(xy)??(3x)??(1)?
2x?2yy??y?xy??3?0
y??y?2x?32y?x
dy?y?dx?y?2x?3y?xdx
2(2)sin(x?y)?exy?4x,求y?
解:方程两边同时对x求导得:
cos(x?y)?(x?y)??exy?(xy)??4
cos(x?y)?(1?y?)?exy?(y?xy?)?4
y?(cos(x?y)?xexy)?4?cos(x?y)?yexy
y??4?cos(x?y)?yexycos(x?y)?xexy
5.求下列函数的二阶导数: (1)y?ln(1?x2),求y??
解:
y??11?x2(1?x2)??2x1?x2
y???(2x2(1?x2)?2x(0?2x)2?2x21?x2)??(1?x2)2?(1?x2)2 xi(2)
y?1?x,求
y??及y??(1)
n1131ns解:y??(1?x?1?nx)??(x2)??(x2)???1?2x2?2x2 i
315353y???(?1x?2?1x?2)???1?(?3x?2)?1?(?1)x?2?3x?2?1x?2=
222222441
《经济数学基础》形成性考核册(二)
(一)填空题 1.若?f(x)dx?2x?2x?c,则f(x)?2xln2?2.
2.
?(sinx)?dx?sinx?c. 3.
若
?f(x)dx?F(x)?c,则
?xf(1?x2)dx??12F(1?x2)?c 4.设函数
dedx?1ln(1?x2)dx?0 05. 若P(x)??11x1?t2dt,则P?(x)??1?x2.
(二)单项选择题
1. 下列函数中,( D )是xsinx2
的原函数.
A.
12cosx2 B.2cosx2
C.-2cosx2 D.-
12cosx2
2. 下列等式成立的是( C ). A.sinxdx?d(cosx) B.lnxdx?d(1x)
C.2xdx?1ln2d(2x) D.1xdx?dx 3. 下列不定积分中,常用分部积分法计算的是( C ). A.?cos(2x?1)dx, B.
?x1?x2dx
C.
?xsin2xdx D.?x1?x2dx 4. 下列定积分中积分值为0的是( D ). A.?1?12xdx?2 B.
?16?1dx?15 C.
??cosxdx?0 D.??????sinxdx?0
5. 下列无穷积分中收敛的是( B ).
3
A.D.
???1??1??1xdx B.?dx C.edx 2?10xx(三)解答题
1.计算下列不定积分
???1sinxdx
解:原式?3x(1)?xdx
e?2?xdcosx 2xxx??2xcos?4?cosd()3x13x()?c 解:原式 ??()dx?222eln3?1e(1?x)2 (2)?xdx 解:原式??1?2x?x2xdx ?(x-1132?2x2?x2)dx
?135
?2x2?4x223?5x2?c2(3)
?x?4x?2dx
解:原式??(x?2)(x?2)x?2dx?12x2?2x?c (4)?11?2xdx 解:原式??112?1?2xd(1-2x) ??12ln1?2x?c
(5)
?x2?x2dx
解:原式?12?2?x2d(2?x2)
3
?13(2?x2)2?c (6)
?sinxxdx
解:原式
?2?sinxdx
??2cosx?c
(7)?xsinx2dx
??2cosxx 2?4sin2?c(8)?ln(x?1)dx
解:原式?xln(x?1)??xx?1dx
?xln(x?1)??(1?1
x?1)dx ?xln(x?1)?x?ln(x?1)?c2.计算下列定积分 (1)
?2?11?xdx
解:原式??12?1(1?x)dx??1(x?1)dx
??1(1?x)21?1?1(x?1)22
221 ?2?12?5212
(2)
?
ex
1
x
2dx 解:原式???21ex11d(x) 1x2
??e1
1?e?e2e3(3)
?11x1?lnxdx 解:原式?2?e31121?lnxd(lnx?1)
e3
?21?lnx1
?4?2?24
?(4)
?20xcos2xdx
?解:原式?12?20xdsin2x
???1xsin2x102?
24?20sin2xd(2x)?
?114cos2x02??2(5)
?e1xlnxdx
解:原式?12?e1lnxdx2
《经济数学基础》形成性考核册(三)
(一)填空题
?104?5?1.设矩阵
A???3?232?,则
A的元素
?216?1????a23?__________.答案:_3 2.设
A,B均为3阶矩阵,且
A?B??3,则
?2ABT=________. 答案:?72
3.
设
A,B均为
n阶矩阵,则等式(A?B)2?A2?2AB?B2成立的充分必要条件是 .答案:AB?BA
4. 设
A,B均为
n阶矩阵,
(I?B)可逆,则矩阵A?BX?X的解X?______________.答案:(I?B)?1A
?5. 设矩阵A??100??020?,则A?1?__________.答???00?3??????1010?案:??020?? ???00?1??3??
?12e1e2xlnx1?2?1xdx
?1112e2?4e2?4 ?14(e2?1)(6)
?4?x0(1?xe)dx
解:原式??440dx??0xde?x
?4?xe?x4??400e?xd(?x)?4?4e?4?e?4?1
?5?5e?4(二)单项选择题
1. 以下结论或等式正确的是( C ).
A.若
A,B均为零矩阵,则有A?B
B.若
AB?AC,且A?O,则B?C
C.对角矩阵是对称矩阵 D.若
A?O,B?O,则AB?O
2. 设
A为3?4矩阵,B为5?2矩阵,且乘积矩阵ACBT有
意义,则CT为( A )矩阵. A.2?4 B.4?2 C.3?5
D.5?3
3. 设
A,B均为
n阶可逆矩阵,则下列等式成立的是
( C ). ` A.(A?B)?1?A?1?B?1,
B.(A?B)?1?A?1?B?1C.
AB?BA D.AB?BA
4. 下列矩阵可逆的是( A ).
?? A.
?123??023? B.
??10?1??003??101???????123??C.??11? D.?11??00??22?
???
5
相关推荐: