全优好卷
??π??x??0?0,??xy?ey?asinx(x,y)?2??当a?0时,设1与2在点00处有公切线?,
x0π?π?e?asinx0,?tanx0?1?x0??a?2e4?x04?e?acosx0则?,
故0?a≤2e;
?3π???x?π,?0???2??y1?exy2?asinx(x0,y0)??a?0当时,设与在点处有公切线,
5π4π4同法可得?2e≤a?0;
[?2e,2e]5π4π4综上所述,实数a的取值范围是.
22.(本小题满分10分)【选修4?4:坐标系与参数方程】
4y?1??(x?2)?4x?3y?11?03解:(Ⅰ)直线l的直角坐标方程为;
圆C的直角坐标方程为x2?y2?4x?0.
3?x??t?2,??5??y?4t?1,x2?y2?4x?0?5?(Ⅱ)将代入,
8t2?t?3?05整理得:,
∴|PA||PB|?|t1||t2|?|t1t2|?3.
23.(本小题满分10分)【选修4?5:不等式选讲】
f(x)?x?5?|2x?1|?x?5?2x?1?x?5(Ⅰ)解:或2x?1??x?5,
∴解集为{x|x?4或x??2}.
全优好卷
全优好卷
(Ⅱ)证明:
f(x)?|2x?1|?|2x?6y?2?6y?3|≤2|x?3y?1|?3|2y?1|?23??146.
全优好卷
相关推荐: