高考物理动量守恒定律解题技巧及练习题(含答案)
一、高考物理精讲专题动量守恒定律
1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m、m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:
(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)【解析】 【详解】
解:(1)设第一次碰撞刚结束时甲、乙的速度分别为v1、v2,之后甲做匀速直线运动,乙以
12mv0;(2) mv0 4v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速
度相等,有:v1?v2 2而第一次碰撞中系统动量守恒有:2mv0?2mv1?mv2 由以上两式可得:v1?v0v2?v0 , 21222mgv0?g2mgv1?所以第一次碰撞中的机械能损失为:?E?g1221212mv2?mv0 24(2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:I?mv2?0?mv0
2.如图所示,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=lkg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T,导轨的间距与导体棒的长度均为L=0.5m,导轨的半径r=0.5m,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s2,不计空气阻力。
(1)求导体棒刚进入凹槽时的速度大小;
(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;
(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) v?210m/s (2)25J (3)P?【解析】 【详解】
解:(1)根据机械能守恒定律,可得:mgh?mv2 解得导体棒刚进入凹槽时的速度大小:v?210m/s
(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点
根据能力守恒可知,整个过程中系统产生的热量:Q?mg(h?r)?25J
(3)设导体棒第一次通过最低点时速度大小为v1,凹槽速度大小为v2,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:mv1?Mv2 由能量守恒可得:
129W 41212mv1?mv2?mg(h?r)?Q1 22导体棒第一次通过最低点时感应电动势:E?BLv1?BLv2
E2回路电功率:P?
R联立解得:P?9W 4
3.冰球运动员甲的质量为80.0kg。当他以5.0m/s的速度向前运动时,与另一质量为100kg、速度为3.0m/s的迎面而来的运动员乙相撞。碰后甲恰好静止。假设碰撞时间极短,求:
(1)碰后乙的速度的大小; (2)碰撞中总动能的损失。 【答案】(1)1.0m/s(2)1400J
【解析】
试题分析:(1)设运动员甲、乙的质量分别为m、M,碰前速度大小分别为v、V,碰后乙的速度大小为V′,规定甲的运动方向为正方向,由动量守恒定律有:mv-MV=MV′…① 代入数据解得:V′=1.0m/s…②
(2)设碰撞过程中总机械能的损失为△E,应有:mv2+MV2=MV′2+△E…③ 联立②③式,代入数据得:△E=1400J 考点:动量守恒定律;能量守恒定律
4.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。车运动时受到的摩擦阻力恒为车所受重力的k倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:
(1)整个过程中摩擦阻力 所做的总功; (2)人给第一辆车水平冲量的大小; (3)第一次与第二次碰撞系统功能损失之比。 【答案】
【解析】略
5.(1)(6分)一质子束入射到静止靶核272713AI上,产生如下核反应:p+13AI→x+n式中p代表质子,n代表中子,x代表核反应产生的新核。由反应式可知,新核x的质子数为 ,中子数为 。
(2)(9分)在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d。现给A一初速度,使A与B发生弹性正碰,碰撞时间极短:当两木块都停止运动后,相距仍然为d。已知两木块与桌面之间的动摩擦因数均为μ,B的质量为A的2倍,重力加速度大小为
g。求A的初速度的大小。
【答案】(1)14 13 (2)5.6?gd 【解析】(1)由127Al?2711H?1314X?0n,由质量数守恒定律和电荷数守恒可得,新核的
质子数为14,中子数为13。
相关推荐: